10 research outputs found

    Genetic basis of control of Rhynchosporium secalis infection and symptom expression in barley

    Get PDF
    The genetic basis of several different components of resistance to Rhynchosporium secalis in barley was investigated in a mapping population derived from a cross between winter and spring barley types. Both the severity of visual disease symptoms and amount of R. secalis DNA in leaf tissues were assessed in field trials in Scotland in the 2007/2008 and 2008/2009 growing seasons. Relative expression of symptoms was defined as the residual values from a linear regression of amount of R. secalis DNA against visual plot disease score at GS 50. Amount of R. secalis DNA and visual disease score were highly correlated traits and identified nearly identical QTL. The genetic control of relative expression of symptoms was less clear. However, a QTL on chromosome 7H was identified as having a significant effect on the expression of visual disease symptoms relative to overall amount of R. secalis colonisationPeer reviewedFinal Accepted Versio

    Characterisation of barley resistance to rhynchosporium on chromosome 6HS

    Get PDF
    Key Message: Major resistance gene to rhynchosporium, Rrs18, maps close to the telomere on the short arm of chromosome 6H in barley. Rhynchosporium or barley scald caused by a fungal pathogen Rhynchosporium commune is one of the most destructive and economically important diseases of barley in the world. Testing of Steptoe × Morex and CIho 3515 × Alexis doubled haploid populations has revealed a large effect QTL for resistance to R. commune close to the telomere on the short arm of chromosome 6H, present in both populations. Mapping markers flanking the QTL from both populations onto the 2017 Morex genome assembly revealed a rhynchosporium resistance locus independent of Rrs13 that we named Rrs18. The causal gene was fine mapped to an interval of 660 Kb using Steptoe × Morex backcross 1 S₂ and S₃ lines with molecular markers developed from Steptoe exome capture variant calling. Sequencing RNA from CIho 3515 and Alexis revealed that only 4 genes within the Rrs18 interval were transcribed in leaf tissue with a serine/threonine protein kinase being the most likely candidate for Rrs18.Max Coulter, Bianca Büttner, Kerstin Hofmann, Micha Bayer, Luke Ramsay, Günther Schweizer, Robbie Waugh, Mark E. Looseley, Anna Avrov

    Identification and molecular mapping of a single Arabidopsis thaliana locus determining resistance to a phytopathogenic Pseudomonas syringae isolate

    No full text
    Debener T, Lehnackers H, Dangl JL. Identification and molecular mapping of a single Arabidopsis thaliana locus determining resistance to a phytopathogenic Pseudomonas syringae isolate. Plant journal. 1991;11(1):289-302

    Resistance, epidemiology and sustainable management of Rhynchosporium secalis populations on barley

    No full text
    The definitive version can be found at: http://onlinelibrary.wiley.com/ Copyright Wiley-Blackwell [Full text of this article is not available in the UHRA]Rhynchosporium secalis is one of the most destructive pathogens of barley worldwide, causing yield decreases of up to 40% and reduced grain quality. Rhynchosporium is a polycyclic disease. Primary inoculum includes conidia produced on crop debris, infected seeds and possibly ascospores, although these have not yet been identified. Secondary disease spread is primarily by splash dispersal of conidia produced on infected leaves, which may be symptomless early in the growing season. Host resistance to R. secalis is mediated by both 'major' or host-specific genes (complete resistance) and 'minor' genes of smaller, generally additive effects (partial resistance). Crop growth stage and plant or canopy architecture can modify the expression of resistance. Resistance genes are distributed unevenly across the barley genome, with most being clustered on the short arms of chromosomes 1H, 3H, 6H and 7H, or in the centromeric region or on the long arm of chromosome 3H. Strategies used to manage rhynchosporium epidemics include cultivar resistance and fungicides, and also cultural practices such as crop rotation, cultivar mixtures and manipulation of sowing date, sowing rate or fertiliser rate. However, the high genetic variability of R. secalis can result in rapid adaptation of pathogen populations to render some of these control strategies ineffective when they are used alone. Sustainable control of rhynchosporium needs to integrate major-gene-mediated resistance, partial resistance and other strategies such as customized fungicide programmes, species or cultivar rotation, resistance gene deployment, clean seed and cultivar mixtures.Peer reviewe

    Fine mapping, physical mapping and development of diagnostic markers for the Rrs2 scald resistance gene in barley

    Full text link
    The Rrs2 gene confers resistance to the fungal pathogen Rhynchosporium secalis which causes leaf scald, a major barley disease. The Rrs2 gene was fine mapped to an interval of 0.08 cM between markers 693M6_6 and P1D23R on the distal end of barley chromosome 7HS using an Atlas (resistant) x Steffi (susceptible) mapping population of 9,179 F(2)-plants. The establishment of a physical map of the Rrs2 locus led to the discovery that Rrs2 is located in an area of suppressed recombination within this mapping population. The analysis of 58 barley genotypes revealed a large linkage block at the Rrs2 locus extending over several hundred kb which is present only in Rrs2 carrying cultivars. Due to the lack of recombination in the mapping population and the presence of a Rrs2-specific linkage block, we assume a local chromosomal rearrangement (alien introgression or inversion) in Rrs2 carrying varieties. The variety analysis led to the discovery of eight SNPs which were diagnostic for the Rrs2 phenotype. Based on these SNPs diagnostic molecular markers (CAPS and pyrosequencing markers) were developed which are highly useful for marker-assisted selection in resistance gene pyramiding programmes for Rhynchosporium secalis resistance in barley

    Control of foliar diseases in barley:towards an integrated approach

    No full text
    Barley is one of the world's most important crops providing food and related products for millions of people. Diseases continue to pose a serious threat to barley production, despite the use of fungicides and resistant varieties, highlighting the impact of fungicide resistance and the breakdown of host plant resistance on the efficacy of control measures. This paper reviews progress towards an integrated approach for disease management in barley in which new methods may be combined with existing measures to improve the efficacy of control in the long-term. Advances have been made in genetic mapping of resistance (R) genes and in identifying novel sources of genes in wild barley populations and land races. Marker assisted selection techniques are being used to pyramid R genes to increase the durability of resistance. Elicitors to induce host resistance used in combination with fungicides can provide effective disease control in the field and could delay the evolution of fungicide insensitivity. Traits that may contribute to disease tolerance and escape have been identified and the extent of genetic variation within barley germplasm is being determined. Tools are being developed to integrate the above methods via an assessment of the risk of economic injury occurring from disease to guide decisions on the requirement for fungicide treatment. Barriers exist to the adoption of integrated management approaches from growers and end-users further down the supply chain (e. g. acceptance of variety mixtures) and policy incentives from government may be required for it to be taken up in practice. © 2012 KNPV
    corecore