4,320 research outputs found

    Supersymmetric Brane World Scenarios from Off-Shell Supergravity

    Full text link
    Using N=2 off-shell supergravity in five dimensions, we supersymmetrize the brane world scenario of Randall and Sundrum. We extend their construction to include supersymmetric matter at the fixpoints.Comment: 15 pages, no figures, late

    Foregrounding the Margins: A Dialogue about Literacy, Learning, and Social Annotation

    Get PDF
    Annotation, or the addition of a note to a text, enables readers-as-writers to make their thinking visible. This article, which is structured as a dialogue among four literacy educators, discusses the potential for social annotation to transform literacy learning, assessment, and teacher education. Collectively, the authors argue for social annotation as a vital and transformative practice in hybrid and post-pandemic education. The authors reflect on their personal and pedagogical uses of annotation, sharing related resources for educators across K-12 and higher education contexts

    Improved photometry of SDSS crowded field images: Structure and dark matter content in the dwarf spheroidal galaxy Leo I

    Full text link
    We explore how well crowded field point-source photometry can be accomplished with SDSS data: We present a photometric pipeline based on DoPhot, and tuned for analyzing crowded-field images from the SDSS. Using Monte Carlo simulations we show that the completeness of source extraction is above 80% to i < 21 (AB) and a stellar surface density of about 200 sq.amin. Hence, a specialized data pipeline can efficiently be used for e.g. nearby resolved galaxies in SDSS images, where the standard SDSS photometric package Photo, when applied in normal survey mode, gives poor results. We apply our pipeline to an area of about 3.55sq.deg. around the dwarf spheroidal galaxy (dSph) Leo I, and construct a high S/N star-count map of Leo I via an optimized filter in color-magnitude space (g,r,i). Although the radial surface-density profile of the dwarf deviates from the best fit empirical King model towards outer radii, we find no evidence for tidal debris out to a stellar surface-density of 4*10^(-3) of the central value. We determine the total luminosity of Leo I, and model its mass using the spherical and isotropic Jeans equation. Assuming that 'mass follows light' we constrain a lower limit of the total mass of the dSph to be (1.7+/-0.2)*10^7 Msol. Contrary, if the mass in Leo I is dominated by a constant density dark-matter (DM) halo, then the mass within the central 12' is (2+/-0.6)*10^8 Msol. This leads to a mass-to-light ratio of >>6 (Ic_sol), and possibly >75 if the DM halo dominates the mass and extends further out than 12'. In summary, our results show that Leo I is a symmetric, relaxed and bound system; this supports the idea that Leo I is a dark-matter dominated system.Comment: 13 pages, 11 figures; accepted for publication in A

    Stability of the Higgs mass in theories with extra dimensions

    Get PDF
    We analyze the ultraviolet stability of the Higgs mass in recently proposed Kaluza-Klein models compactified on S_1/Z_2 or S_1/(Z_2\times Z_2'), both at the field theory and string theory level. Fayet-Iliopoulos terms of U(1) hypercharge are shown to be of vital importance for this discussion. Models with a single Higgs doublet seem to be generically affected by quadratic divergences.Comment: Contribution to the Proceedings of Durham IPPP meeting May 2001.(12 pages, LaTeX

    Universal contributions to scalar masses from five dimensional supergravity

    Get PDF
    We compute the effective Kahler potential for matter fields in warped compactifications, starting from five dimensional gauged supergravity, as a function of the matter fields localization. We show that truncation to zero modes is inconsistent and the tree-level exchange of the massive gravitational multiplet is needed for consistency of the four-dimensional theory. In addition to the standard Kahler coming from dimensional reduction, we find the quartic correction coming from integrating out the gravity multiplet. We apply our result to the computation of scalar masses, by assuming that the SUSY breaking field is a bulk hypermultiplet. In the limit of extreme opposite localization of the matter and the spurion fields, we find zero scalar masses, consistent with sequestering arguments. Surprisingly enough, for all the other cases the scalar masses are tachyonic. This suggests the holographic interpretation that a CFT sector always generates operators contributing in a tachyonic way to scalar masses. Viability of warped su- persymmetric compactifications necessarily asks then for additional contributions. We discuss the case of additional bulk vector multiplets with mixed boundary conditions, which is a partic- ularly simple and attractive way to generate large positive scalar masses. We show that in this case successful fermion mass matrices implies highly degenerate scalar masses for the first two generations of squarks and sleptons.Comment: 23 pages. v2: References added, new section on effect of additional bulk vector multiplets and phenomenolog

    Exact results for some Madelung type constants in the finite-size scaling theory

    Full text link
    A general formula is obtained from which the madelung type constant: C(dν)=0dxxd/2ν1[(l=exl2)d1(πx)d/2] C(d|\nu)=\int_0^\infty dx x^{d/2-\nu-1}[(\sum_{l=-\infty}^\infty e^{-xl^2})^d-1-(\frac\pi x)^{d/2}] extensively used in the finite-size scaling theory is computed analytically for some particular cases of the parameters dd and ν\nu. By adjusting these parameters one can obtain different physical situations corresponding to different geometries and magnitudes of the interparticle interaction.Comment: IOP- macros, 5 pages, replaced with amended version (1 ref. added

    New UltraCool and Halo White Dwarf Candidates in SDSS Stripe 82

    Full text link
    A 2.5 x 100 degree region along the celestial equator (Stripe 82) has been imaged repeatedly from 1998 to 2005 by the Sloan Digital Sky Survey. A new catalogue of ~4 million light-motion curves, together with over 200 derived statistical quantities, for objects in Stripe 82 brighter than r~21.5 has been constructed by combining these data by Bramich et al. (2007). This catalogue is at present the deepest catalogue of its kind. Extracting the ~130000 objects with highest signal-to-noise ratio proper motions, we build a reduced proper motion diagram to illustrate the scientific promise of the catalogue. In this diagram disk and halo subdwarfs are well-separated from the cool white dwarf sequence. Our sample of 1049 cool white dwarf candidates includes at least 8 and possibly 21 new ultracool H-rich white dwarfs (T_eff < 4000K) and one new ultracool He-rich white dwarf candidate identified from their SDSS optical and UKIDSS infrared photometry. At least 10 new halo white dwarfs are also identified from their kinematics.Comment: 10 pages, 5 figures, published in MNRAS, minor text changes, final versio

    Ultracompact, low-loss directional couplers on InP based on self-imaging by multimode interference

    Get PDF
    We report extremely compact (494-µm-long 3 dB splitters, including input/output bends), polarization-insensitive, zero-gap directional couplers on InP with a highly multimode interference region that are based on the self-imaging effect. We measured cross-state extinctions better than 28 dB and on-chip insertion losses of 0.5 dB/coupler plus 1 dB/cm guide propagation loss at 1523 nm wavelength

    The Masses of the Milky Way and Andromeda galaxies

    Full text link
    We present a family of robust tracer mass estimators to compute the enclosed mass of galaxy haloes from samples of discrete positional and kinematical data of tracers, such as halo stars, globular clusters and dwarf satellites. The data may be projected positions, distances, line of sight velocities or proper motions. Forms of the estimator tailored for the Milky Way galaxy and for M31 are given. Monte Carlo simulations are used to quantify the uncertainty as a function of sample size. For the Milky Way, the satellite sample consists of 26 galaxies with line-of-sight velocities. We find that the mass of the Milky Way within 300 kpc is ~ 0.9 x 10^12 solar masses assuming velocity isotropy. However, the mass estimate is sensitive to the anisotropy and could plausibly lie between 0.7 - 3.4 x 10^12 solar masses. Incorporating the proper motions of 6 Milky Way satellites into the dataset, we find ~ 1.4 x 10^12 solar masses. The range here if plausible anisotropies are used is still broader, from 1.2 - 2.7 x 10^12 solar masses. For M31, there are 23 satellite galaxies with measured line-of-sight velocities, but only M33 and IC 10 have proper motions. We use the line of sight velocities and distances of the satellite galaxies to estimate the mass of M31 within 300 kpc as ~ 1.4 x 10^12 solar masses assuming isotropy. There is only a modest dependence on anisotropy, with the mass varying between 1.3 -1.6 x 10^12 solar masses. Given the uncertainties, we conclude that the satellite data by themselves yield no reliable insights into which of the two galaxies is actually the more massive.Comment: 15 pages, submitted to MNRA
    corecore