1,981 research outputs found

    Quantum effects in the evolution of vortices in the electromagnetic field

    Full text link
    We analyze the influence of electron-positron pairs creation on the motion of vortex lines in electromagnetic field. In our approach the electric and magnetic fields satisfy nonlinear equations derived from the Euler-Heisenberg effective Lagrangian. We show that these nonlinearities may change the evolution of vortices.Comment: REVTEX4 and 5 EPS figure

    Polarization of tightly focused laser beams

    Full text link
    The polarization properties of monochromatic light beams are studied. In contrast to the idealization of an electromagnetic plane wave, finite beams which are everywhere linearly polarized in the same direction do not exist. Neither do beams which are everywhere circularly polarized in a fixed plane. It is also shown that transversely finite beams cannot be purely transverse in both their electric and magnetic vectors, and that their electromagnetic energy travels at less than c. The electric and magnetic fields in an electromagnetic beam have different polarization properties in general, but there exists a class of steady beams in which the electric and magnetic polarizations are the same (and in which energy density and energy flux are independent of time). Examples are given of exactly and approximately linearly polarized beams, and of approximately circularly polarized beams.Comment: 9 pages, 6 figure

    Abrupt grain boundary melting in ice

    Full text link
    The effect of impurities on the grain boundary melting of ice is investigated through an extension of Derjaguin-Landau-Verwey-Overbeek theory, in which we include retarded potential effects in a calculation of the full frequency dependent van der Waals and Coulombic interactions within a grain boundary. At high dopant concentrations the classical solutal effect dominates the melting behavior. However, depending on the amount of impurity and the surface charge density, as temperature decreases, the attractive tail of the dispersion force interaction begins to compete effectively with the repulsive screened Coulomb interaction. This leads to a film-thickness/temperature curve that changes depending on the relative strengths of these interactions and exhibits a decrease in the film thickness with increasing impurity level. More striking is the fact that at very large film thicknesses, the repulsive Coulomb interaction can be effectively screened leading to an abrupt reduction to zero film thickness.Comment: 8 pages, 1 figur

    Observations of the 8 December 1987 occultation of AG+40 deg 0783 by 324 Bamberga

    Get PDF
    The occultation of AG+40 deg 0783 by 324 Bamberga on 8 December 1987 was observed at 13 sites in the United States, Japan, and China. At four sites the event was observed photoelectrically; the other observations were visual. A least-squares fit of a circular limb profile to the data gives a diameter of 227.6 + or - 1.9 km. However, this solution is inconsistent with a negative visual observation near the northern edge of the ground track. The inconsistency cannot be removed by assuming an elliptical profile. The data suggest that Bamberga, despite its low-amplitude lightcurve, may depart significantly from a spherical or ellipsoidal shape. The asteroid also appears to be at least 10 percent smaller than indicated by infrared radiometry

    Non-linear optical susceptibilities, Raman efficiencies and electrooptic tensors from first-principles density functional perturbation theory

    Full text link
    The non-linear response of infinite periodic solids to homogenous electric fields and collective atomic displacements is discussed in the framework of density functional perturbation theory. The approach is based on the 2n + 1 theorem applied to an electric-field-dependent energy functional. We report the expressions for the calculation of the non-linear optical susceptibilities, Raman scattering efficiencies and electrooptic coefficients. Different formulations of third-order energy derivatives are examined and their convergence with respect to the k-point sampling is discussed. We apply our method to a few simple cases and compare our results to those obtained with distinct techniques. Finally, we discuss the effect of a scissors correction on the EO coefficients and non-linear optical susceptibilities

    Optical Vortices during a Super-Resolution Process in a Metamaterial

    Full text link
    We show that a super-resolution process with 100% visibility is characterized by the formation of a point of phase singularity in free space outside the lens in the form of a saddle with topological charge equal to -1. The saddle point is connected to two vortices at the end boundary of the lens, and the two vortices are in turn connected to another saddle point inside the lens. The structure saddle-vortices-saddle is topologically stable. The formation of the saddle point in free space explains also the negative flux of energy present in a certain region of space outside the lens. The circulation strength of the power flow can be controlled by varying the position of the object plane with respect to the lens

    Strained tetragonal states and Bain paths in metals

    Full text link
    Paths of tetragonal states between two phases of a material, such as bcc and fcc, are called Bain paths. Two simple Bain paths can be defined in terms of special imposed stresses, one of which applies directly to strained epitaxial films. Each path goes far into the range of nonlinear elasticity and reaches a range of structural parameters in which the structure is inherently unstable. In this paper we identify and analyze the general properties of these paths by density functional theory. Special examples include vanadium, cobalt and copper, and the epitaxial path is used to identify an epitaxial film as related uniquely to a bulk phase.Comment: RevTeX, 4 pages, 4 figures, submitted to Phys. Rev. Let

    Properties of nitrogen-vacancy centers in diamond: group theoretic approach

    Get PDF
    We present a procedure that makes use of group theory to analyze and predict the main properties of the negatively charged nitrogen-vacancy (NV) center in diamond. We focus on the relatively low temperatures limit where both the spin-spin and spin-orbit effects are important to consider. We demonstrate that group theory may be used to clarify several aspects of the NV structure, such as ordering of the singlets in the (e2e^2) electronic configuration, the spin-spin and the spin-orbit interactions in the (aeae) electronic configuration. We also discuss how the optical selection rules and the response of the center to electric field can be used for spin-photon entanglement schemes. Our general formalism is applicable to a broad class of local defects in solids. The present results have important implications for applications in quantum information science and nanomagnetometry.Comment: 30 pages, 6 figure

    Surface Roughness and Effective Stick-Slip Motion

    Get PDF
    The effect of random surface roughness on hydrodynamics of viscous incompressible liquid is discussed. Roughness-driven contributions to hydrodynamic flows, energy dissipation, and friction force are calculated in a wide range of parameters. When the hydrodynamic decay length (the viscous wave penetration depth) is larger than the size of random surface inhomogeneities, it is possible to replace a random rough surface by effective stick-slip boundary conditions on a flat surface with two constants: the stick-slip length and the renormalization of viscosity near the boundary. The stick-slip length and the renormalization coefficient are expressed explicitly via the correlation function of random surface inhomogeneities. The effective stick-slip length is always negative signifying the effective slow-down of the hydrodynamic flows by the rough surface (stick rather than slip motion). A simple hydrodynamic model is presented as an illustration of these general hydrodynamic results. The effective boundary parameters are analyzed numerically for Gaussian, power-law and exponentially decaying correlators with various indices. The maximum on the frequency dependence of the dissipation allows one to extract the correlation radius (characteristic size) of the surface inhomogeneities directly from, for example, experiments with torsional quartz oscillators.Comment: RevTeX4, 14 pages, 3 figure

    Energy levels in polarization superlattices: a comparison of continuum strain models

    Full text link
    A theoretical model for the energy levels in polarization superlattices is presented. The model includes the effect of strain on the local polarization-induced electric fields and the subsequent effect on the energy levels. Two continuum strain models are contrasted. One is the standard strain model derived from Hooke's law that is typically used to calculate energy levels in polarization superlattices and quantum wells. The other is a fully-coupled strain model derived from the thermodynamic equation of state for piezoelectric materials. The latter is more complete and applicable to strongly piezoelectric materials where corrections to the standard model are significant. The underlying theory has been applied to AlGaN/GaN superlattices and quantum wells. It is found that the fully-coupled strain model yields very different electric fields from the standard model. The calculated intersubband transition energies are shifted by approximately 5 -- 19 meV, depending on the structure. Thus from a device standpoint, the effect of applying the fully-coupled model produces a very measurable shift in the peak wavelength. This result has implications for the design of AlGaN/GaN optical switches.Comment: Revtex
    corecore