8,213 research outputs found
Self-assembly in the electrical double layer of ionic liquids
We have studied the structure of two ionic liquids confined between negatively charged mica sheets. Both liquids exhibit interfacial layering, however the repeat distance is dramatically different for the two liquids. Our results suggest a transition from alternating cation-anion monolayers to tail-to-tail cation bilayers when the length of the cation hydrocarbon chain is increased
Using keystroke logging to understand writers’ processes on a reading-into-writing test
Background
Integrated reading-into-writing tasks are increasingly used in large-scale language proficiency tests. Such tasks are said to possess higher authenticity as they reflect real-life writing conditions better than independent, writing-only tasks. However, to effectively define the reading-into-writing construct, more empirical evidence regarding how writers compose from sources both in real-life and under test conditions is urgently needed. Most previous process studies used think aloud or questionnaire to collect evidence. These methods rely on participants’ perceptions of their processes, as well as their ability to report them.
Findings
This paper reports on a small-scale experimental study to explore writers’ processes on a reading-into-writing test by employing keystroke logging. Two L2 postgraduates completed an argumentative essay on computer. Their text production processes were captured by a keystroke logging programme. Students were also interviewed to provide additional information. Keystroke logging like most computing tools provides a range of measures. The study examined the students’ reading-into-writing processes by analysing a selection of the keystroke logging measures in conjunction with students’ final texts and interview protocols.
Conclusions
The results suggest that the nature of the writers’ reading-into-writing processes might have a major influence on the writer’s final performance. Recommendations for future process studies are provided
Pre-mRNA Splicing Modulation by Antisense Oligonucleotides
Pre-mRNA splicing, a dynamic process of intron removal and exon joining, is governed by a combinatorial control exerted by overlapping cis-elements that are unique to each exon and its flanking intronic sequences. Splicing cis-elements are usually 4-to-8-nucleotide-long linear motifs that provide binding sites for specific proteins. Pre-mRNA splicing is also influenced by secondary and higher order RNA structures that affect accessibility of splicing cis-elements. Antisense oligonucleotides (ASOs) that block splicing cis-elements and/or affect RNA structure have been shown to modulate splicing in vivo. Therefore, ASO-based strategies have emerged as a powerful tool for therapeutic manipulation of splicing in pathological conditions. Here we describe an ASO-based approach to increase the production of the full-length SMN2 mRNA in spinal muscular atrophy patient cells
Antimicrobial Susceptibility Profile of Bacterial Pathogens Isolated From Pregnant Women with Asymptomatic Bacteriuria at Tertiary Hospital in Northeastern Nigeria
Asymptomatic urinary tract infection among pregnant women is a common clinical episode that is frequently undiagnosed. A total of 200 clean-catch mid-stream urine (150 pregnant women and 50 non-pregnant women)were examined by microscopy and culture methods. Overall, the prevalence of asymptomatic bacteriuria was 59.0% (118/200) and was significantly higher among pregnant (63.3%, 95/150) than non-pregnant (46.0%, 23/50) subjects (÷2 = 4.66, df = 1, p = 0.03). Tertiary education (72.6%, OR = 1.45, p = 0.014), third trimester (77.6%, OR = 1.39, p = 0.042), multi-gravidity (79.0%, OR = 1.41, p = 0.0017) and multiparity (75.9%, OR = 1.49, p = 0.03) were factors associated with asymptomatic bacteriuria in studied pregnant subjects. Of the 118 bacterial isolates, Klebsiella spp accounted for 39.8% (47/118), followed by S. aureus 22.9% (27/118), E.coli 19.5% (23/118), Proteus spp 9.3% (11/118) and P. aeruginosa 8.5% (10/118) (p < 0.0001). Antibacterial susceptibility test revealed that all bacterial isolates were susceptible to quinolones (ciprofloxacin, pefloxacin and ofloxacin). In addition to this, S. aureus was also susceptible to erythromycin. However, all bacterial isolates were resistant to readily available antibacterial drugs including augmentin®, cotrimoxazole, penicillin and cephalexin. In conclusion, prevalence of asymptomatic bacteriuria among pregnant women in this study isconsidered to be high and the bacterial isolates were quinolones sensitive and resistant to other commonly used antibacterial drugs. Considering the clinical implications of untreated urinary tract infection, it is therefore advisable that routine urine culture may be adopted as part of antenatal care.Keywords: Asymptomatic bacteriuria, urinary tract infection, antimicrobial susceptibility, tertiary hospita
Spontaneous symmetry breaking in a quenched ferromagnetic spinor Bose condensate
A central goal in condensed matter and modern atomic physics is the
exploration of many-body quantum phases and the universal characteristics of
quantum phase transitions in so far as they differ from those established for
thermal phase transitions. Compared with condensed-matter systems, atomic gases
are more precisely constructed and also provide the unique opportunity to
explore quantum dynamics far from equilibrium. Here we identify a second-order
quantum phase transition in a gaseous spinor Bose-Einstein condensate, a
quantum fluid in which superfluidity and magnetism, both associated with
symmetry breaking, are simultaneously realized. Rb spinor condensates
were rapidly quenched across this transition to a ferromagnetic state and
probed using in-situ magnetization imaging to observe spontaneous symmetry
breaking through the formation of spin textures, ferromagnetic domains and
domain walls. The observation of topological defects produced by this symmetry
breaking, identified as polar-core spin-vortices containing non-zero spin
current but no net mass current, represents the first phase-sensitive in-situ
detection of vortices in a gaseous superfluid.Comment: 6 pages, 4 figure
On the Energy Dependence of the Dipole-Proton Cross Section in Deep Inelastic Scattering
We study the dipole picture of high-energy virtual-photon-proton scattering.
It is shown that different choices for the energy variable in the dipole cross
section used in the literature are not related to each other by simple
arguments equating the typical dipole size and the inverse photon virtuality,
contrary to what is often stated. We argue that the good quality of fits to
structure functions that use Bjorken-x as the energy variable - which is
strictly speaking not justified in the dipole picture - can instead be
understood as a consequence of the sign of scaling violations that occur for
increasing Q^2 at fixed small x. We show that the dipole formula for massless
quarks has the structure of a convolution. From this we obtain derivative
relations between the structure function F_2 at large and small Q^2 and the
dipole-proton cross section at small and large dipole size r, respectively.Comment: 27 page
Statistical modeling of ground motion relations for seismic hazard analysis
We introduce a new approach for ground motion relations (GMR) in the
probabilistic seismic hazard analysis (PSHA), being influenced by the extreme
value theory of mathematical statistics. Therein, we understand a GMR as a
random function. We derive mathematically the principle of area-equivalence;
wherein two alternative GMRs have an equivalent influence on the hazard if
these GMRs have equivalent area functions. This includes local biases. An
interpretation of the difference between these GMRs (an actual and a modeled
one) as a random component leads to a general overestimation of residual
variance and hazard. Beside this, we discuss important aspects of classical
approaches and discover discrepancies with the state of the art of stochastics
and statistics (model selection and significance, test of distribution
assumptions, extreme value statistics). We criticize especially the assumption
of logarithmic normally distributed residuals of maxima like the peak ground
acceleration (PGA). The natural distribution of its individual random component
(equivalent to exp(epsilon_0) of Joyner and Boore 1993) is the generalized
extreme value. We show by numerical researches that the actual distribution can
be hidden and a wrong distribution assumption can influence the PSHA negatively
as the negligence of area equivalence does. Finally, we suggest an estimation
concept for GMRs of PSHA with a regression-free variance estimation of the
individual random component. We demonstrate the advantages of event-specific
GMRs by analyzing data sets from the PEER strong motion database and estimate
event-specific GMRs. Therein, the majority of the best models base on an
anisotropic point source approach. The residual variance of logarithmized PGA
is significantly smaller than in previous models. We validate the estimations
for the event with the largest sample by empirical area functions. etc
Numerical instability of the Akhmediev breather and a finite-gap model of it
In this paper we study the numerical instabilities of the NLS Akhmediev
breather, the simplest space periodic, one-mode perturbation of the unstable
background, limiting our considerations to the simplest case of one unstable
mode. In agreement with recent theoretical findings of the authors, in the
situation in which the round-off errors are negligible with respect to the
perturbations due to the discrete scheme used in the numerical experiments, the
split-step Fourier method (SSFM), the numerical output is well-described by a
suitable genus 2 finite-gap solution of NLS. This solution can be written in
terms of different elementary functions in different time regions and,
ultimately, it shows an exact recurrence of rogue waves described, at each
appearance, by the Akhmediev breather. We discover a remarkable empirical
formula connecting the recurrence time with the number of time steps used in
the SSFM and, via our recent theoretical findings, we establish that the SSFM
opens up a vertical unstable gap whose length can be computed with high
accuracy, and is proportional to the inverse of the square of the number of
time steps used in the SSFM. This neat picture essentially changes when the
round-off error is sufficiently large. Indeed experiments in standard double
precision show serious instabilities in both the periods and phases of the
recurrence. In contrast with it, as predicted by the theory, replacing the
exact Akhmediev Cauchy datum by its first harmonic approximation, we only
slightly modify the numerical output. Let us also remark, that the first rogue
wave appearance is completely stable in all experiments and is in perfect
agreement with the Akhmediev formula and with the theoretical prediction in
terms of the Cauchy data.Comment: 27 pages, 8 figures, Formula (30) at page 11 was corrected, arXiv
admin note: text overlap with arXiv:1707.0565
Interacting Supernovae: Types IIn and Ibn
Supernovae (SNe) that show evidence of strong shock interaction between their
ejecta and pre-existing, slower circumstellar material (CSM) constitute an
interesting, diverse, and still poorly understood category of explosive
transients. The chief reason that they are extremely interesting is because
they tell us that in a subset of stellar deaths, the progenitor star may become
wildly unstable in the years, decades, or centuries before explosion. This is
something that has not been included in standard stellar evolution models, but
may significantly change the end product and yield of that evolution, and
complicates our attempts to map SNe to their progenitors. Another reason they
are interesting is because CSM interaction is an efficient engine for making
bright transients, allowing super-luminous transients to arise from normal SN
explosion energies, and allowing transients of normal SN luminosities to arise
from sub-energetic explosions or low radioactivity yield. CSM interaction
shrouds the fast ejecta in bright shock emission, obscuring our normal view of
the underlying explosion, and the radiation hydrodynamics of the interaction is
challenging to model. The CSM interaction may also be highly non-spherical,
perhaps linked to binary interaction in the progenitor system. In some cases,
these complications make it difficult to definitively tell the difference
between a core-collapse or thermonuclear explosion, or to discern between a
non-terminal eruption, failed SN, or weak SN. Efforts to uncover the physical
parameters of individual events and connections to possible progenitor stars
make this a rapidly evolving topic that continues to challenge paradigms of
stellar evolution.Comment: Final draft of a chapter in the "SN Handbook". Accepted. 25 pages, 3
fig
Anomaly-Free Supersymmetric SO(2N+2)/U(N+1) sigma-Model Based on the SO(2N+1) Lie Algebra of the Fermion Operators
The extended supersymmetric (SUSY) sigma-model has been proposed on the bases
of SO(2N+1) Lie algebra spanned by fermion annihilation-creation operators and
pair operators. The canonical transformation, extension of an SO(2N) Bogoliubov
transformation to an SO(2N+1) group, is introduced. Embedding the SO(2N+1)
group into an SO(2N+2) group and using SO(2N+2)/U(N+1) coset variables, we have
investigated the SUSY sigma-model on the Kaehler manifold, the coset space
SO(2N+2)/U(N+1). We have constructed the Killing potential, extension of the
potential in the SO(2N)/U(N) coset space to that in the SO(2N+2)/U(N+1) coset
space. It is equivalent to the generalized density matrix whose diagonal-block
part is related to a reduced scalar potential with a Fayet-Ilipoulos term. The
f-deformed reduced scalar potential is optimized with respect to vacuum
expectation value of the sigma-model fields and a solution for one of the
SO(2N+1) group parameters has been obtained. The solution, however, is only a
small part of all solutions obtained from anomaly-free SUSY coset models. To
construct the coset models consistently, we must embed a coset coordinate in an
anomaly-free spinor representation (rep) of SO(2N+2) group and give
corresponding Kaehler and Killing potentials for an anomaly-free
SO(2N+2)/U(N+1) model based on each positive chiral spinor rep. Using such
mathematical manipulation we construct successfully the anomaly-free
SO(2N+2)/U(N+1) SUSY sigma-model and investigate new aspects which have never
been seen in the SUSY sigma-model on the Kaehler coset space SO(2N)/U(N). We
reach a f-deformed reduced scalar potential. It is minimized with respect to
the vacuum expectation value of anomaly-free SUSY sigma-model fields. Thus we
find an interesting f-deformed solution very different from the previous
solution for an anomaly-free SO(2.5+2)/(SU(5+1)*U(1)) SUSY sigma-model.Comment: 24 pages, no fiure
- …