480 research outputs found

    Hybridization effects and multipole orders in Pr skutterudites

    Full text link
    Theoretical account is given of 4f-electron dynamics and multipole orders in Pr skutterudites with particular attention to (i) mechanism of the crystalline electric field (CEF) splitting leading to a pseudo-quartet ground state;(ii) Kondo effect due to exchange interactions involving the pseudo-quartet;(iii) multipole orders in the lattice of the pseudo-quartet in magnetic field.Competition between the point-charge interaction andhybridization between 4f and conduction electrons is identified as the key for controlling the CEF splitting. It is found that one of two pseudo-spins forming the pseudo-quartet has a ferromagnetic exchange, while the other has an antiferromagnetic exchange with conduction electrons. The Kondo effect is clearly seen in the resistivity calculated by the NCA, provided the low-lying triplet above the singlet is mainly composed of the Γ4\Gamma_4-type wave functions.If the weight of the Γ5\Gamma_5-type is large in the triplet, the Kondo effect does not appear.This difference caused by the nature of the triplet explains the presence of the Kondo effect inPrFe4_4P12_{12}, and its absence in PrOs4_4Sb12_{12}.By taking the minimal model with antiferro-quadrupole (AFQ) and ferro-type intersite interactions for dipoles and octupoles between nearest-neighbors,the mean-field theory reproduces the overall feature of the multiple ordered phases in PrFe4_4P12_{12}. The AFQ order with the Γ3\Gamma_3-type symmetry is found to be stable only as a mixture of O20O_2^0 and O22O_2^2 components.Comment: 21 pages, to be published in proc. YKIS200

    Diffraction from Ordered States of Higher Multipoles

    Full text link
    Possible ways of identification are discussed of an electronic order of higher multipoles such as octupoles and hexadecapoles. A particularly powerful method is resonant X-ray scattering (RXS) using quadrupolar resonance processes called E2.The characteristic azimuthal angle dependence of Ce0.7_{0.7}La0.3_{0.3}B6_6 is interpreted as evidence of antiferro-octupole order. For PrRu4_4P12_{12}, eightfold pattern against azimuthal angle is predicted if its metal-insulator transition is a consequence of a hexadecapole order. In non-resonant superlattice Bragg scattering, hexadecapole contribution may also be identified because of absence of quadrupole component.Comment: Invited paper to be published in Proc. Hiroshima Workshop on Novel Functional Materials with Multinary Freedoms (Physica B, 2006

    Recording system for the solar neutron monitoring at Mt. Norikura

    Get PDF
    To monitor solar neutron events, a new recording system will be installed at Mt. Norikura Cosmic Ray Observatory. The recording system is composed of a pulse counter with clock and a microcomputer with minifloppy disk. The counter and the microcomputer are connected through the General Purpose Interface Bus line. The one minute total count of the neutron monitor is recorded on the minifloppy disk

    Developing and utilizing an Euler computational method for predicting the airframe/propulsion effects for an aft-mounted turboprop transport. Volume 2: User guide

    Get PDF
    This manual explains how to use an Euler based computational method for predicting the airframe/propulsion integration effects for an aft-mounted turboprop transport. The propeller power effects are simulated by the actuator disk concept. This method consists of global flow field analysis and the embedded flow solution for predicting the detailed flow characteristics in the local vicinity of an aft-mounted propfan engine. The computational procedure includes the use of several computer programs performing four main functions: grid generation, Euler solution, grid embedding, and streamline tracing. This user's guide provides information for these programs, including input data preparations with sample input decks, output descriptions, and sample Unix scripts for program execution in the UNICOS environment

    Multipole expansion for magnetic structures: A generation scheme for symmetry-adapted orthonormal basis set in crystallographic point group

    Get PDF
    We propose a systematic method to generate a complete orthonormal basis set of multipole expansion for magnetic structures in arbitrary crystal structure. The key idea is the introduction of a virtual atomic cluster of a target crystal, on which we can clearly define the magnetic configurations corresponding to symmetry-adapted multipole moments. The magnetic configurations are then mapped onto the crystal so as to preserve the magnetic point group of the multipole moments, leading to the magnetic structures classified according to the irreducible representations of crystallographic point group. We apply the present scheme to pyrhochlore and hexagonal ABO3 crystal structures, and demonstrate that the multipole expansion is useful to investigate the macroscopic responses of antiferromagnets

    On the Hidden Order in URu2_{2}Si2_{2} --- Antiferro Hexadecapole Order and its Consequences

    Full text link
    An antiferro ordering of an electric hexadecapole moment is discussed as a promising candidate for the long standing mystery of the hidden order phase in URu2_{2}Si2_{2}. Based on localized ff-electron picture, we discuss the rationale of the selected multipole and the consequences of the antiferro hexadecapole order of xy(x2y2)xy(x^{2}-y^{2}) symmetry. The mean-field solutions and the collective excitations from them explain reasonably significant experimental observations: the strong anisotropy in the magnetic susceptibility, characteristic behavior of pressure versus magnetic field or temperature phase diagrams, disappearance of inelastic neutron-scattering intensity out of the hidden order phase, and insensitiveness of the NQR frequency at Ru-sites upon ordering. A consistency with the strong anisotropy in the magnetic responses excludes all the multipoles in two-dimensional representations, such as (Oyz,Ozx)(O_{yz},O_{zx}). The expected azimuthal angle dependences of the resonant X-ray scattering amplitude are given. The (x2y2)(x^{2}-y^{2})-type antiferro quadrupole should be induced by an in-plane magnetic field along [110][110], which is reflected in the thermal expansion and the elastic constant of the transverse (c11c12)/2(c_{11}-c_{12})/2 mode. The (x2y2)(x^{2}-y^{2})-type [(xy)(xy)-type] antiferro quadrupole is also induced by applying the uniaxial stress along [110][110] direction [[100][100] direction]. A detection of these induced antiferro quadrupoles under the in-plane magnetic field or the uniaxial stress using the resonant X-ray scattering provides a direct redundant test for the proposed order parameter.Comment: 10 pages, 10 figures, 5 table

    Local Heavy Quasiparticle in Four-Level Kondo Model

    Full text link
    An impurity four-level Kondo model, in which an ion is tunneling among 4-stable points and interacting with surrounding conduction electrons, is investigated using both perturbative and numerical renormalization group methods. The results of numerical renormalization group studies show that it is possible to construct the ground state wavefunction including the excited ion states if we take into account the interaction between the conduction electrons and the ion. The resultant effective mass of quasiparticles is moderately enhanced. This result offers a good explanation for the enhanced and magnetically robust Sommerfeld coefficient observed in SmOs4_4Sb12_{12}, some other filled-skutterudites, and clathrate compounds.Comment: 9 pages, 7 figures. Added references and "Note added

    Magnetically Robust Non-Fermi Liquid Behavior in Heavy Fermion Systems with f^2-Configuration: Competition between Crystalline-Electric-Field and Kondo-Yosida Singlets

    Full text link
    We study a magnetic field effect on the Non-Fermi Liquid (NFL) which arises around the quantum critical point (QCP) due to the competition between the f^2-crystalline-electric-field singlet and the Kondo-Yosida singlet states by using the numerical renormalization ground method. We show the characteristic temperature T_F^*, corresponding to a peak of a specific heat, is not affected by the magnetic field up to H_z^* which is determined by the distance from the QCP or characteristic energy scales of each singlet states. As a result, in the vicinity of QCP, there are parameter regions where the NFL is robust against the magnetic field, at an observable temperature range T > T_F^*, up to H_z^* which is far larger than T_F^* and less than min(T_{K2}, $Delta).Comment: 8 pages, 9 figur
    corecore