129 research outputs found

    Spin-Orbit Assisted Variable-Range Hopping in Strong Magnetic Fields

    Full text link
    It is shown that in the presence of strong magnetic fields, spin-orbit scattering causes a sharp increase in the effective density of states in the variable-range hopping regime when temperature decreases. This effect leads to an exponential enhancement of the conductance above its value without spin-orbit scattering. Thus an experimental study of the hopping conductivity in a fixed, large magnetic field, is a sensitive tool to explore the spin-orbit scattering parameters in the strongly localized regime.Comment: 9 pages + 2 figures (enclosed), Revte

    Temperature-Dependence of the Resistivity of a Dilute 2D Electron System in High Parallel Magnetic Field

    Full text link
    We report measurements of the resistance of silicon MOSFETs as a function of temperature in high parallel magnetic fields where the 2D system of electrons has been shown to be fully spin-polarized. A magnetic field suppresses the metallic behavior observed in the absence of a magnetic field. In a field of 10.8 T, insulating behavior is found for densities up to n_s approximately 1.35 x 10^{11} cm^{-2} or 1.5 n_c; above this density the resistance is a very weak function of temperature, varying less than 10% between 0.25 K and 1.90 K. At low densities the resistance goes to infinity more rapidly as the temperature is reduced than in zero field and the magnetoresistance diverges as T goes to 0.Comment: 4 pages, including 4 figures. References adde

    Two-species percolation and Scaling theory of the metal-insulator transition in two dimensions

    Full text link
    Recently, a simple non-interacting-electron model, combining local quantum tunneling via quantum point contacts and global classical percolation, has been introduced in order to describe the observed ``metal-insulator transition'' in two dimensions [1]. Here, based upon that model, a two-species-percolation scaling theory is introduced and compared to the experimental data. The two species in this model are, on one hand, the ``metallic'' point contacts, whose critical energy lies below the Fermi energy, and on the other hand, the insulating quantum point contacts. It is shown that many features of the experiments, such as the exponential dependence of the resistance on temperature on the metallic side, the linear dependence of the exponent on density, the e2/he^2/h scale of the critical resistance, the quenching of the metallic phase by a parallel magnetic field and the non-monotonic dependence of the critical density on a perpendicular magnetic field, can be naturally explained by the model. Moreover, details such as the nonmonotonic dependence of the resistance on temperature or the inflection point of the resistance vs. parallel magnetic are also a natural consequence of the theory. The calculated parallel field dependence of the critical density agrees excellently with experiments, and is used to deduce an experimental value of the confining energy in the vertical direction. It is also shown that the resistance on the ``metallic'' side can decrease with decreasing temperature by an arbitrary factor in the degenerate regime (T≲EFT\lesssim E_F).Comment: 8 pages, 8 figure

    Region-Specific Microstructure in the Neonatal Ventricles of a Porcine Model

    Get PDF
    Β© 2018, Biomedical Engineering Society. The neonate transitions from placenta-derived oxygen, to supply from the pulmonary system, moments after birth. This requires a series of structural developments to divert more blood through the right heart and onto the lungs, with the tissue quickly remodelling to the changing ventricular workload. In some cases, however, the heart structure does not fully develop causing poor circulation and inefficient oxygenation, which is associated with an increase in mortality and morbidity. This study focuses on developing an enhanced knowledge of the 1-day old heart, quantifying the region-specific microstructural parameters of the tissue. This will enable more accurate mathematical and computational simulations of the young heart. Hearts were dissected from 12, 1-day-old deceased Yorkshire piglets (mass: 2.1–2.4kg, length: 0.38–0.51m), acquired from a breeding farm. Evans blue dye was used to label the heart equator and to demarcate the left and right ventricle free walls. Two hearts were used for three-dimensional diffusion-tensor magnetic resonance imaging, to quantify the fractional anisotropy (FA). The remaining hearts were used for two-photon excited fluorescence and second-harmonic generation microscopy, to quantify the cardiomyocyte and collagen fibril structures within the anterior and posterior aspects of the right and left ventricles. FA varied significantly across both ventricles, with the greatest in the equatorial region, followed by the base and apex. The FA in each right ventricular region was statistically greater than that in the left. Cardiomyocyte and collagen fibre rotation was greatest in the anterior wall of both ventricles, with less dispersion when compared to the posterior walls. In defining these key parameters, this study provides a valuable insight into the 1-day-old heart that will provide a valuable platform for further investigation the normal and abnormal heart using mathematical and computational models

    Epidermal growth factor mediates detachment from and invasion through collagen I and Matrigel in Capan-1 pancreatic cancer cells

    Get PDF
    BACKGROUND: Pancreatic adenocarcinoma is a highly invasive neoplasm. Epidermal growth factor (EGF) and its receptor are over expressed in pancreatic cancer, and expression correlates with invasion and metastasis. We hypothesized that EGF receptor and integrin signalling pathways interact in mediating cellular adhesion and invasion in pancreatic cancer, and that invasiveness correlates temporally with detachment from extracellular matrix. METHODS: We tested this hypothesis by investigating the role of EGF in mediating adhesion to and invasion through collagen I and Matrigel in the metastatic pancreatic adenocarcinoma cell line Capan-1. Adhesion and invasion were measured using in vitro assays of fluorescently-labeled cells. Adhesion and invasion assays were also performed in the primary pancreatic adenocarcinoma cell line MIA PaCa-2. RESULTS: EGF inhibited adhesion to collagen I and Matrigel in Capan-1 cells. The loss of adhesion was reversed by AG825, an inhibitor of erbB2 receptor signalling and by wortmannin, a PI3K inhibitor, but not by the protein synthesis inhibitor cycloheximide. EGF stimulated invasion through collagen I and Matrigel at concentrations and time courses similar to those mediating detachment from these extracellular matrix components. Adhesion to collagen I was different in MIA PaCa-2 cells, with no significant change elicited following EGF treatment, whereas treatment with the EGF family member heregulin-alpha elicited a marked increase in adhesion. Invasion through Matrigel in response to EGF, however, was similar to that observed in Capan-1 cells. CONCLUSION: An inverse relationship exists between adhesion and invasion capabilities in Capan-1 cells but not in MIA PaCa-2 cells. EGF receptor signalling involving the erbB2 and PI3K pathways plays a role in mediating these events in Capan-1 cells

    Magnetoresistance of one-dimensional subbands in tunnel-coupled double quantum wires

    Get PDF
    We study the low-temperature in-plane magnetoresistance of tunnel-coupled quasi-one-dimensional quantum wires. The wires are defined by two pairs of mutually aligned split gates on opposite sides of a < 1 micron thick AlGaAs/GaAs double quantum well heterostructure, allowing independent control of their widths. In the ballistic regime, when both wires are defined and the field is perpendicular to the current, a large resistance peak at ~6 Tesla is observed with a strong gate voltage dependence. The data is consistent with a counting model whereby the number of subbands crossing the Fermi level changes with field due to the formation of an anticrossing in each pair of 1D subbands

    Enhanced Neointima Formation Following Arterial Injury in Immune Deficient Rag-1βˆ’/βˆ’ Mice Is Attenuated by Adoptive Transfer of CD8+ T cells

    Get PDF
    T cells modulate neointima formation after arterial injury but the specific T cell population that is activated in response to arterial injury remains unknown. The objective of the study was to identify the T cell populations that are activated and modulate neointimal thickening after arterial injury in mice. Arterial injury in wild type C57Bl6 mice resulted in T cell activation characterized by increased CD4+CD44hi and CD8+CD44hi T cells in the lymph nodes and spleens. Splenic CD8+CD25+ T cells and CD8+CD28+ T cells, but not CD4+CD25+ and CD4+CD28+ T cells, were also significantly increased. Adoptive cell transfer of CD4+ or CD8+ T cells from donor CD8βˆ’/βˆ’ or CD4βˆ’/βˆ’ mice, respectively, to immune-deficient Rag-1βˆ’/βˆ’ mice was performed to determine the T cell subtype that inhibits neointima formation after arterial injury. Rag-1βˆ’/βˆ’ mice that received CD8+ T cells had significantly reduced neointima formation compared with Rag-1βˆ’/βˆ’ mice without cell transfer. CD4+ T cell transfer did not reduce neointima formation. CD8+ T cells from CD4βˆ’/βˆ’ mice had cytotoxic activity against syngeneic smooth muscle cells in vitro. The study shows that although both CD8+ T cells and CD4+ T cells are activated in response to arterial injury, adoptive cell transfer identifies CD8+ T cells as the specific and selective cell type involved in inhibiting neointima formation
    • …
    corecore