49 research outputs found

    Transient differential reflectivity of ferromagnetic and paramagnetic phases in the bilayered manganite La1.24Sr1.76Mn2O7

    Full text link
    Photoinduced effects in a single crystal of bilayered manganites, La2-2xSr1+2xMn2O7 (x=0.38), were investigated in a wide range of temperatures by pump-probe measurement at a photon energy of 1.6eV. In a ferromagnetic metallic state, significant enhancement of positive rise in differential reflectivity with a slow relaxing time of hundred picoseconds was observed just below Tc=127K, indicating that the reflectivity change with the slow relaxation time constant is induced by laser heating. We have also observed an unconventional fast relaxing component that has a time constant of the order of ten picoseconds. This fast relaxing component, whose absolute value has an asymmetric peak at Tc, is presumably due to short-range correlation of Jahn-Teller distortion.Comment: 13 pages, 4 figures, accepted to Solid State Communication

    Non-contact and real-time measurement of heart rate and heart rate variability using microwave reflectometry

    Get PDF
    In this paper, we present noncontact and noninvasive vital signal detection using a microwave reflectometer. Elimination of noise components due to random movement of human subjects has been the biggest issue for microwave measurement. Appropriate filtering, amplitude control of the reflectometer signal, and cross correlation among multiple reflectometers together with new algorithms have enabled motion artifact elimination, signal peak detection, and data processing for various parameters related to heart rate (HR) and heart rate variability (HRV). We focus here on the real time measurements of instantaneous HR and HRV for practical use. The evaluation by microwave reflectometry is completely noninvasive and feasible even through clothing, which is extremely effective for health maintenance in daily life as well as for preventing sudden death related to, for example, coronary heart disease and ventricular arrhythmia

    Atomic collision dynamics in optical lattices

    Get PDF
    We simulate collisions between two atoms, which move in an optical lattice under the dipole-dipole interaction. The model describes simultaneously the two basic dynamical processes, namely the Sisyphus cooling of single atoms, and the light-induced inelastic collisions between them. We consider the J=1/2 -> J=3/2 laser cooling transition for Cs, Rb and Na. We find that the hotter atoms in a thermal sample are selectively lost or heated by the collisions, which modifies the steady state distribution of atomic velocities, reminiscent of the evaporative cooling process.Comment: 17 pages, 15 figure
    corecore