123 research outputs found

    The radial curvature of an end that makes eigenvalues vanish in the essential spectrum II

    Full text link
    Under the quadratic-decay-conditions of the radial curvatures of an end, we shall derive growth estimates of solutions to the eigenvalue equation and show the absence of eigenvalues.Comment: " \ge " in the conditions (4)(*_4) and (5)(*_5) should be replaced by ">>". γn12(ba)\gamma \ge \frac{n-1}{2}(b-a) in the conclusion of Theorem 1.3 should be replaced by γ>n12(ba)\gamma > \frac{n-1}{2}(b-a); trivial miss-calculatio

    Cold-adapted RTX lipase from antarctic Pseudomonas sp. strain AMS8: isolation, molecular modeling and heterologous expression

    Get PDF
    A new strain of psychrophilic bacteria (designated strain AMS8) from Antarctic soil was screened for extracellular lipolytic activity and further analyzed using molecular approach. Analysis of 16S rDNA showed that strain AMS8 was similar to Pseudomonas sp. A lipase gene named lipAMS8 was successfully isolated from strain AMS8, cloned, sequenced and overexpressed in Escherichia coli. Sequence analysis revealed that lipAMS8 consist of 1,431 bp nucleotides that encoded a polypeptide consisting of 476 amino acids. It lacked an N-terminal signal peptide and contained a glycine- and aspartate-rich nonapeptide sequence at the C-terminus, which are known to be the characteristics of repeats-in-toxin bacterial lipases. Furthermore, the substrate binding site of lipAMS8 was identified as S207, D 255 and H313, based on homology modeling and multiple sequence alignment. Crude lipase exhibited maximum activity at 20 C and retained almost 50 % of its activity at 10 C. The molecular weight of lipAMS8 was estimated to be 50 kDa via sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The optimal expression level was attained using the recombinant plasmid pET32b/BL21(DE3) expressed at 15 C for 8 h, induced by 0.1 mM isopropyl β-D thiogalactoside (IPTG) at E. coli growth optimal density of 0.5

    Output feedback pole-assignment procedure

    No full text

    Semiquantitative analysis of corpus callosum injury using magnetic resonance imaging indicates clinical severity in patients with diffuse axonal injury

    No full text
    Objective: To evaluate the hypothesis that the extent of corpus callosum injury indicates the depth of shearing lesions in the central brain structure and therefore relates to the clinical severity of diffuse axonal injury. Methods: A simple and objective procedure for semiquantitative analysis of magnetic resonance images (MRI)—the maximum signal intensity ratio (MSIR)—was employed prospectively in 21 patients with diffuse axonal injury but without apparent injury to the ventral pons. All were diagnosed using serial combination MRI scans of fluid attenuated inversion recovery (FLAIR) and T2* weighted gradient echo imaging during the initial two weeks after the injury. The signal intensity ratio between the two regions of interest—the corpus callosum and the normal appearing ventral pons—was calculated serially in mid-sagittal and parasagittal FLAIR image sections in each patient. The MSIR during the study period was determined as a semiquantitative index of corpus callosum injury in each patient. The correlations between MSIR and the duration of unconsciousness, Glasgow outcome scale at six months, and the presence of apparent midbrain injury were investigated. Results: The mean (SD) MSIR value was 1.12 (0.18) at 7.4 (3.1) days after the injury (n = 21). MSIR correlated strongly with the duration of unconsciousness (n = 19, R(2) = 0.74, p < 0.0001), and was higher in patients with both an unfavourable GOS outcome (p = 0.020) and apparent midbrain injury (p < 0.001). Conclusions: MSIR, which is a simple and objective procedure for semiquantitative analysis of corpus callosum damage in diffuse axonal injury, correlated with clinical severity. A high MSIR value may indicate the presence of concomitant midbrain injury
    corecore