34 research outputs found

    FLASH Knockdown Sensitizes Cells To Fas-Mediated Apoptosis via Down-Regulation of the Anti-Apoptotic Proteins, MCL-1 and Cflip Short

    Get PDF
    FLASH (FLICE-associated huge protein or CASP8AP2) is a large multifunctional protein that is involved in many cellular processes associated with cell death and survival. It has been reported to promote apoptosis, but we show here that depletion of FLASH in HT1080 cells by siRNA interference can also accelerate the process. As shown previously, depletion of FLASH halts growth by down-regulating histone biosynthesis and arrests the cell cycle in S-phase. FLASH knockdown followed by stimulating the cells with Fas ligand or anti-Fas antibodies was found to be associated with a more rapid cleavage of PARP, accelerated activation of caspase-8 and the executioner caspase-3 and rapid progression to cellular disintegration. As is the case for most anti-apoptotic proteins, FLASH was degraded soon after the onset of apoptosis. Depletion of FLASH also resulted in the reduced intracellular levels of the anti-apoptotic proteins, MCL-1 and the short isoform of cFLIP. FLASH knockdown in HT1080 mutant cells defective in p53 did not significantly accelerate Fas mediated apoptosis indicating that the effect was dependent on functional p53. Collectively, these results suggest that under some circumstances, FLASH suppresses apoptosis

    γ-Catenin is overexpressed in acute myeloid leukemia and promotes the stabilization and nuclear localization of β-catenin

    Get PDF
    Canonical Wnt signaling regulates the transcription of T-cell factor (TCF)-responsive genes through the stabilization and nuclear translocation of the transcriptional co-activator, β-catenin. Overexpression of β-catenin features prominently in acute myeloid leukemia (AML) and has previously been associated with poor clinical outcome. Overexpression of γ-catenin mRNA (a close homologue of β-catenin) has also been reported in AML and has been linked to the pathogenesis of this disease, however, the relative roles of these catenins in leukemia remains unclear. Here we report that overexpression and aberrant nuclear localization of γ-catenin is frequent in AML. Significantly, γ-catenin expression was associated with β-catenin stabilization and nuclear localization. Consistent with this, we found that ectopic γ-catenin expression promoted the stabilization and nuclear translocation of β-catenin in leukemia cells. β-Catenin knockdown demonstrated that both γ- and β-catenin contribute to TCF-dependent transcription in leukemia cells. These data indicate that γ-catenin expression is a significant factor in the stabilization of β-catenin in AML. We also show that although normal cells exclude nuclear translocation of both γ- and β-catenin, this level of regulation is lost in the majority of AML patients and cell lines, which allow nuclear accumulation of these catenins and inappropriate TCF-dependent transcription

    Action selection and action awareness

    Get PDF
    Human actions are often classified as either internally generated, or externally specified in response to environmental cues. These two modes of action selection have distinct neural bases, but few studies investigated how the mode of action selection affects the subjective experience of action. We measured the experience of action using the subjective compression of the interval between actions and their effects, known as ‘temporal binding’. Participants performed either a left or a right key press, either in response to a specific cue, or as they freely chose. Moreover, the time of each keypress could either be explicitly cued to occur in one of two designated time intervals, or participants freely chose in which interval to act. Each action was followed by a specific tone. Participants judged the time of their actions or the time of the tone. Temporal binding was found for both internally generated and for stimulus-based actions. However, the amount of binding depended on whether or not both the choice and the timing of action were selected in the same way. Stronger binding was observed when both action choice and action timing were internally generated or externally specified, compared to conditions where the two parameters were selected by different routes. Our result suggests that temporal action–effect binding depends on how actions are selected. Binding is strongest when actions result from a single mode of selection

    A Common Role for Various Human Truncated Adenomatous Polyposis Coli Isoforms in the Control of Beta-Catenin Activity and Cell Proliferation

    Get PDF
    The tumour suppressor gene adenomatous polyposis coli (APC) is mutated in most colorectal cancer cases, leading to the synthesis of truncated APC products and the stabilization of β-catenin. Truncated APC is almost always retained in tumour cells, suggesting that it serves an essential function. Here, RNA interference has been used to down-regulate truncated APC in several colorectal cancer cell lines expressing truncated APCs of different lengths, thereby performing an analysis covering most of the mutation cluster region (MCR). The consequences on proliferation in vitro, tumour formation in vivo and the level and transcriptional activity of β-catenin have been investigated. Down-regulation of truncated APC results in an inhibition of tumour cell population expansion in vitro in 6 cell lines out of 6 and inhibition of tumour outgrowth in vivo as analysed in one of these cell lines, HT29. This provides a general rule explaining the retention of truncated APC in colorectal tumours and defines it as a suitable target for therapeutic intervention. Actually, we also show that it is possible to design a shRNA that targets a specific truncated isoform of APC without altering the expression of wild-type APC. Down-regulation of truncated APC is accompanied by an up-regulation of the transcriptional activity of β-catenin in 5 out of 6 cell lines. Surprisingly, the increased signalling is associated in most cases (4 out of 5) with an up-regulation of β-catenin levels, indicating that truncated APC can still modulate wnt signalling through controlling the level of β-catenin. This control can happen even when truncated APC lacks the β-catenin inhibiting domain (CiD) involved in targeting β-catenin for proteasomal degradation. Thus, truncated APC is an essential component of colorectal cancer cells, required for cell proliferation, possibly by adjusting β-catenin signalling to the “just right” level

    A Systematic Screen for Micro-RNAs Regulating the Canonical Wnt Pathway

    Get PDF
    MicroRNAs (miRs) and the canonical Wnt pathway are known to be dysregulated in human cancers and play key roles during cancer initiation and progression. To identify miRs that can modulate the activity of the Wnt pathway we performed a cell-based overexpression screen of 470 miRs in human HEK293 cells. We identified 38 candidate miRs that either activate or repress the canonical Wnt pathway. A literature survey of all verified candidate miRs revealed that the Wnt-repressing miRs tend to be anti-oncomiRs and down-regulated in cancers while Wnt-activating miRs tend to be oncomiRs and upregulated during tumorigenesis. Epistasis-based functional validation of three candidate miRs, miR-1, miR-25 and miR-613, confirmed their inhibitory role in repressing the Wnt pathway and suggest that while miR-25 may function at the level of â-catenin (β-cat), miR-1 and miR-613 act upstream of β-cat. Both miR-25 and miR-1 inhibit cell proliferation and viability during selection of human colon cancer cell lines that exhibit dysregulated Wnt signaling. Finally, transduction of miR-1 expressing lentiviruses into primary mammary organoids derived from Conductin-lacZ mice significantly reduced the expression of the Wnt-sensitive β-gal reporter. In summary, these findings suggest the potential use of Wnt-modulating miRs as diagnostic and therapeutic tools in Wnt-dependent diseases, such as cancer
    corecore