59 research outputs found

    Angiogenesis Markers Quantification in Breast Cancer and Their Correlation with Clinicopathological Prognostic Variables

    Get PDF
    Tumoural angiogenesis is essential for the growth and spread of breast cancer cells. Therefore the aim of this study was to assess the diagnostic performance of angiogenesis markers in tumours and there reflecting levels in serum of breast cancer patients. Angiogenin, Ang2, fibroblast growth factor basic, intercellular adhesion molecule (ICAM)-1, keratinocyte growth factor (KGF), platelet-derived growth factor-BB, and VEGF-A were measured using a FASTQuant angiogenic growth factor multiplex protein assay. We observed that breast cancer tumours exhibited high levels of PDGF-BB, bFGF and VEGF, and extremely high levels of TIMP-1 and Ang-2, whereas in serum we found significantly higher levels of Ang-2, PDGF-BB, bFGF, ICAM-1 and VEGF in patients with breast cancer compared to the benign breast diseases patients. Moreover, some of these angiogenesis markers evaluated in tumour and serum of breast cancer patients exhibited association with standard clinical parameters, ER status as well as MVD of tumours. Angiogenesis markers play important roles in tumour growth, invasion and metastasis. Our results suggest that analysis of angiogenesis markers in tumour and serum of breast cancer patients using multiplex protein assay can improve diagnosis and prognosis in this diseases

    HER2 therapy: Molecular mechanisms of trastuzumab resistance

    Get PDF
    Trastuzumab is a monoclonal antibody targeted against the HER2 tyrosine kinase receptor. The majority of patients with metastatic breast cancer who initially respond to trastuzumab develop resistance within one year of treatment initiation, and in the adjuvant setting 15% of patients still relapse despite trastuzumab-based therapy. In this review, we discuss potential mechanisms of antitumor activity by trastuzumab, and how these mechanisms become altered to promote therapeutic resistance. We also discuss novel therapies that may improve the efficacy of trastuzumab, and that offer hope that the survival of breast cancer patients with HER2-overexpressing tumors can be vastly improved

    Accelerated CMR using zonal, parallel and prior knowledge driven imaging methods

    Get PDF
    Accelerated imaging is highly relevant for many CMR applications as competing constraints with respect to spatiotemporal resolution and tolerable scan times are frequently posed. Three approaches, all involving data undersampling to increase scan efficiencies, are discussed in this review. Zonal imaging can be considered a niche but nevertheless has found application in coronary imaging and CMR flow measurements. Current work on parallel-transmit systems is expected to revive the interest in zonal imaging techniques. The second and main approach to speeding up CMR sequences has been parallel imaging. A wide range of CMR applications has benefited from parallel imaging with reduction factors of two to three routinely applied for functional assessment, perfusion, viability and coronary imaging. Large coil arrays, as are becoming increasingly available, are expected to support reduction factors greater than three to four in particular in combination with 3D imaging protocols. Despite these prospects, theoretical work has indicated fundamental limits of coil encoding at clinically available magnetic field strengths. In that respect, alternative approaches exploiting prior knowledge about the object being imaged as such or jointly with parallel imaging have attracted considerable attention. Five to eight-fold scan accelerations in cine and dynamic CMR applications have been reported and image quality has been found to be favorable relative to using parallel imaging alone

    qCMA: A Desktop Application for Quantitative Collective Cell Migration Analysis

    No full text
    Collective migration is an important cellular trait, which is intensely studied by both basic and translational researchers. Investigation of the underlying mechanisms necessitates high-throughput assays and computational algorithms capable of generating reproducible quantitative measurements of cell migration. We present a desktop tool that can be used easily by any researcher, to quantify both fluorescent and phase-contrast images produced in the course of commonly used gap closure ("scratch," "wound healing") collective migration assays. The software has a simple graphical interface that allows the user to tune the relevant parameters and process large numbers of images (or movies). The output contains segmented images and the numerical values inferred from them, allowing easy quantitative analysis of the results
    • …
    corecore