1,722 research outputs found
Photovoltaic power systems workshop
Discussions are presented on apparent deficiencies in NASA planning and technology development relating to a standard power module (25-35 kW) and to future photovoltaic power systems in general. Topics of discussion consider the following: (1) adequate studies on power systems; (2) whether a standard power system module should be developed from a standard spacecraft; (3) identification of proper approaches to cost reduction; (4) energy storage avoidance; (5) attitude control; (6) thermal effects of heat rejection on solar array configuration stability; (7) assembly of large power systems in space; and (8) factoring terrestrial photovoltaic work into space power systems for possible payoff
A Survey on Compiler Autotuning using Machine Learning
Since the mid-1990s, researchers have been trying to use machine-learning
based approaches to solve a number of different compiler optimization problems.
These techniques primarily enhance the quality of the obtained results and,
more importantly, make it feasible to tackle two main compiler optimization
problems: optimization selection (choosing which optimizations to apply) and
phase-ordering (choosing the order of applying optimizations). The compiler
optimization space continues to grow due to the advancement of applications,
increasing number of compiler optimizations, and new target architectures.
Generic optimization passes in compilers cannot fully leverage newly introduced
optimizations and, therefore, cannot keep up with the pace of increasing
options. This survey summarizes and classifies the recent advances in using
machine learning for the compiler optimization field, particularly on the two
major problems of (1) selecting the best optimizations and (2) the
phase-ordering of optimizations. The survey highlights the approaches taken so
far, the obtained results, the fine-grain classification among different
approaches and finally, the influential papers of the field.Comment: version 5.0 (updated on September 2018)- Preprint Version For our
Accepted Journal @ ACM CSUR 2018 (42 pages) - This survey will be updated
quarterly here (Send me your new published papers to be added in the
subsequent version) History: Received November 2016; Revised August 2017;
Revised February 2018; Accepted March 2018
Controlling Condensate Collapse and Expansion with an Optical Feshbach Resonance
We demonstrate control of the collapse and expansion of an 88Sr Bose-Einstein
condensate using an optical Feshbach resonance (OFR) near the 1S0-3P1
intercombination transition at 689 nm. Significant changes in dynamics are
caused by modifications of scattering length by up to +- ?10a_bg, where the
background scattering length of 88Sr is a_bg = -2a0 (1a0 = 0.053 nm). Changes
in scattering length are monitored through changes in the size of the
condensate after a time-of-flight measurement. Because the background
scattering length is close to zero, blue detuning of the OFR laser with respect
to a photoassociative resonance leads to increased interaction energy and a
faster condensate expansion, whereas red detuning triggers a collapse of the
condensate. The results are modeled with the time-dependent nonlinear
Gross-Pitaevskii equation.Comment: 5 pages, 3 figure
On the asymptotic flux of ultrapermeable seawater reverse osmosis membranes due to concentration polarisation
Just as thermodynamic considerations impose a finite limit on the energy requirements of reverse osmosis, concentration polarisation imposes a finite limit on flux, or equivalently, on system size. In the limit of infinite permeability, we show the limiting flux to be linearly dependent on the mass transfer coefficient and show this to be true for low recovery systems just as well as moderate and high recovery single stage and batch reverse osmosis system designs. At low recovery, the limiting flux depends on the logarithm of the ratio of hydraulic to bulk osmotic pressure and at moderate or higher recovery, the relationship with this pressure ratio is a little more complex but nonetheless can be expressed as an explicit analytical formula. For a single stage seawater reverse osmosis system operating at a hydraulic pressure, recovery ratio, and value of mass transfer coefficient that are typical today, the flux asymptote is roughly 60 L m[superscript −2] h[superscript −1] – roughly four times where average fluxes in seawater reverse osmosis systems currently stand
On the potential of forward osmosis to energetically outperform reverse osmosis desalination
We provide a comparison of the theoretical and actual energy requirements of forward osmosis and reverse osmosis seawater desalination. We argue that reverse osmosis is significantly more energy efficient and that forward osmosis research efforts would best be fully oriented towards alternate applications. The underlying reason for the inefficiency of forward osmosis is the draw-dilution step, which increases the theoretical and actual energy requirements for draw regeneration. As a consequence, for a forward osmosis technology to compete with reverse osmosis, the regeneration process must be significantly more efficient than reverse osmosis. However, even considering the optimisation of the draw solution and the benefits of reduced fouling during regeneration, the efficiency of an optimal draw regeneration process and of reverse osmosis are unlikely to differ significantly, meaning the energy efficiency of direct desalination with reverse osmosis is likely to be superior
Electron Temperature Evolution in Expanding Ultracold Neutral Plasmas
We have used the free expansion of ultracold neutral plasmas as a
time-resolved probe of electron temperature. A combination of experimental
measurements of the ion expansion velocity and numerical simulations
characterize the crossover from an elastic-collision regime at low initial
Gamma_e, which is dominated by adiabatic cooling of the electrons, to the
regime of high Gamma_e in which inelastic processes drastically heat the
electrons. We identify the time scales and relative contributions of various
processes, and experimentally show the importance of radiative decay and
disorder-induced electron heating for the first time in ultracold neutral
plasmas
Ultracold Neutral Plasmas
Ultracold neutral plasmas are formed by photoionizing laser-cooled atoms near
the ionization threshold. Through the application of atomic physics techniques
and diagnostics, these experiments stretch the boundaries of traditional
neutral plasma physics. The electron temperature in these plasmas ranges from
1-1000 K and the ion temperature is around 1 K. The density can approach
cm. Fundamental interest stems from the possibility of
creating strongly-coupled plasmas, but recombination, collective modes, and
thermalization in these systems have also been studied. Optical absorption
images of a strontium plasma, using the Sr
transition at 422 nm, depict the density profile of the plasma, and probe
kinetics on a 50 ns time-scale. The Doppler-broadened ion absorption spectrum
measures the ion velocity distribution, which gives an accurate measure of the
ion dynamics in the first microsecond after photoionization.Comment: 12th International Congress on Plasma Physics, 25-29 October 2004,
Nice (France
High Resolution Ionization of Ultracold Neutral Plasmas
Collective effects, such as waves and instabilities, are integral to our
understanding of most plasma phenomena. We have been able to study these in
ultracold neutral plasmas by shaping the initial density distribution through
spatial modulation of the ionizing laser intensity. We describe a relay imaging
system for the photoionization beam that allows us to create higher resolution
features and its application to extend the observation of ion acoustic waves to
shorter wavelengths. We also describe the formation of sculpted density
profiles to create fast expansion of plasma into vacuum and streaming plasmas
THE EFFECT OF VERY HIGH HYDRAULIC PRESSURE ON THE PERMEABILITY AND SALT REJECTION OF REVERSE OSMOSIS MEMBRANES
We employ a stirred-cell reverse osmosis setup to demonstrate that a seawater reverse osmosis membrane can maintain excellent salt rejection at pressures as high as 172 bar. However, we also demonstrate a very significant drop in membrane permeability at high pressures–likely due to membrane compaction. At 172 bar, permeability is more than 50% lower than at a pressure of 34.5 bar. In addition, our results illustrate how flux fluctuates significantly in time when the pressure is removed and then reapplied, even for very short periods, in high pressure reverse osmosis processes–an effect that requires careful consideration from the perspective of process control and operation. From the perspective of membrane performance, RO is feasible at high pressures but distinct challenges are presented by reduced permeability and increased variability in flux
- …