21 research outputs found

    Intérêt de l'éthylglucuronide comme marqueur d'abus d'alcool, aspects analytiques, diagnostiques et médico-légaux

    Get PDF
    RESUMEUne consommation excessive et chronique d'alcool est associée à une augmentation significative de la morbidité et de la mortalité. L'identification de marqueurs biologiques fiables, permettant de mettre en évidence une consommation excessive et chronique, présente donc un intérêt certain pour prévenir les conséquences néfastes de l'abus d'alcool. L'approche couramment employée consiste à mesurer les marqueurs biologiques indirects dans le sang, tels que les marqueurs hépatiques dont l'augmentation peut résulter d'une consommation chronique et excessive d'alcool. Cependant, leur valeur diagnostique est souvent limitée par leur manque de sensibilité et/ou de spécificité et leur combinaison est généralement recommandée pour améliorer le diagnostic. A ce jour, il n'existe pas de marqueur biologique permettant le diagnostic fiable d'une consommation chronique et excessive d'alcool.L'objectif principal de cette thèse était d'évaluer la pertinence de l'éthylglucuronide (EtG), un métabolite direct de l'éthanol présentant la particularité d'être incorporé dans les cheveux, comme marqueur d'une consommation chronique et excessive d'alcool. Dans un premier temps, une revue de la littérature a permis de dresser un état des lieux de l'usage de l'EtG et d'identifier les axes de réflexion. L'EtG s'est révélé être un marqueur efficace pour identifier une consommation chronique et excessive d'alcool. Cependant, l'absence de seuil de positivité fiable et une méconnaissance des facteurs influençant l'incorporation de l'EtG dans les cheveux ont été mises en évidence. Afin d'investiguer ces différents points, deux études ont été conduites : (1) une étude chez le rat pour tenter de comprendre les facteurs influençant l'incorporation de l'EtG dans les cheveux et étudier la relation entre la quantité d'alcool administrée et la concentration d'EtG mesurée dans les cheveux; et (2) une étude clinique afin de déterminer les performances diagnostiques de l'EtG comme marqueur d'une consommation excessive et chronique d'alcool. Une méthode analytique sensible et sélective par chromatographic gazeuse couplée à la spectrométrie de masse en tandem a été développée et appliquée à l'analyse de l'EtG dans les cheveux.Le sang semblait jouer un rôle majeur dans l'incorporation de l'EtG dans les poils. Son incorporation n'était pas influencée par la pigmentation. La concentration d'EtG mesurée dans les poils de rats reflétait la dose d'éthanol administrée. De plus, la mesure de l'EtG dans les cheveux humains a démontré de très bonnes performances diagnostiques pour détecter une consommation excessive et chronique d'alcool. Les performances diagnostiques de l'EtG surpassaient celles des marqueurs hépatiques usuels seuls ou combinés. L'EtG n'était pas influencé par l'âge, le sexe ou l'indice de masse corporelle. Un seuil de positivité de 25 pg/mg permettait de détecter les consommateurs à usage nocif avec une grande fiabilité. Un seuil de positivité de 9 pg/mg permettait de détecter les consommateurs à risque.SUMMARYChronic and excessive alcohol consumption is associated with a significant increase of morbidity and mortality. The identification of a reliable biomarker to detect chronic and excessive alcohol consumers would be valuable to prevent alcohol's harmful effects. The combined analysis of 2 or more hepatic biomarkers, which are known to be increased following sustained alcohol consumption, is usually applied to enhance the diagnostic performance in identifying chronic and excessive alcohol consumers. However, their diagnostic value is often limited by their lack of sensitivity and / or specificity and their combination is generally recommended to improve diagnosis. To date, there are no reliable biomarkers available for diagnosing chronic and excessive alcohol consumption.The main objective of this research was to evaluate the relevance of EtG, a direct alcohol metabolite, as a biomarker of chronic and excessive alcohol consumption, thanks to its characteristic to incorporate into hair. First, a review of literature on the use of EtG was carried out. EtG demonstrated strong potential in detecting chronic and excessive alcohol consumption. However, the lack of reliable cutoff and the unawareness of factors that affect the EtG incorporation into hair were stressed. To investigate these points, two studies have been conducted: (1) a nonclinical study in rats to determine the factors affecting the incorporation of EtG into hair as well as to investigate the relationship between the amount of alcohol administered and the EtG concentration measured in hair; and (2) a clinical study to determine the diagnostic performance of EtG as a biomarker for the identification of chronic and excessive alcohol consumers. A sensitive and specific Gas Chromatography-Mass Spectrometry coupled to tandem Mass Spectrometry method has been developed and applied to hair EtG analysis.Bloodstream seemed to play a major role in the EtG incorporation into hair. EtG incorporation into rat hair was not affected by hair pigmentation. EtG concentration in rat hair appeared to reflect the EtG concentration in blood. Besides, EtG demonstrated strong diagnostic performance in detecting both heavy alcohol consumption and at-risk alcohol consumption, and clearly outperformed diagnostic performance of hepatic biomarkers. In contrast with hepatic biomarkers, EtG was not associated with age, gender or body mass index. A reliable cutoff value of 25 pg/mg allowed to detect heavy drinkers; a reliable cutoff value of 9 pg/mg allowed to detect at-risk drinkers

    Codeine accumulation and elimination in larvae, pupae, and imago of the blowfly Lucilia sericata and effects on its development.

    Get PDF
    The aim of this study was to evaluate the reliability of insect larvae as samples for toxicological investigations. For this purpose, larvae of Lucilia sericata were reared on samples of minced pig liver treated with different concentrations of codeine: therapeutic, toxic, and potentially lethal doses. Codeine was detected in all tested larvae, confirming the reliability of these specimens for qualitative toxicology analysis. Furthermore, concentrations measured in larvae were correlated with levels in liver tissue. These observations bring new elements regarding the potential use of opiates concentrations in larvae for estimation of drug levels in human tissues. Morphine and norcodeine, two codeine metabolites, have been also detected at different concentrations depending on the concentration of codeine in pig liver and depending on the substance itself. The effects of codeine on the development of L. sericata were also investigated. Results showed that a 29-h interval bias on the evaluation of the larval stage duration calculated from the larvae weight has to be considered if codeine was present in the larvae substrate. Similarly, a 21-h interval bias on the total duration of development, from egg to imago, has to be considered if codeine was present in the larvae substrate

    L'éthylglucuronide: un marquer de la consommation d'alcool [Ethyl glucuronide: a biomarker of alcohol consumption]

    No full text
    Excessive alcohol consumption represents a major risk factor for morbidity and mortality. It is therefore indispensable to be able to detect at-risk drinking. Ethyl glucuronide (EtG) is a specific marker of alcohol consumption. The determination of ethyl glucuronide in urine or blood can be used to prove recent driving under the influence of alcohol, even if ethanol is no longer detectable. The commercialization of an EtG specific immunological assay now allows to obtain preliminary results rapidly and easily with satisfying sensitivity. Moreover, the detection of ethyl glucuronide in hair offers the opportunity to evaluate an alcohol consumption over a long period. The EtG concentration in hair is in correlation with the amount of ingested alcohol. Thus, the analysis of ethyl glucuronide can be used to monitor abstinence, to detect alcohol relapse and to identify at-risk drinkers. However, a cut off allowing to detect chronic alcohol abuser reliably still does not exist. Therefore, it is recommended to perform the analysis of ethyl glucuronide in complement to the existing blood markers. A study financed by the Swiss Foundation for Alcohol Research is actually conducted by the West Switzerland University Center of Legal Medicine in order to establish an objective cut-off

    Use of accuracy profile for the validation of a gas chromatography-negative chemical ionization tandem mass spectrometry method: quantification of ethyl glucuronide in hair

    No full text
    Introduction: Ethylglucuronide (EtG) is a direct and specific metabolite of ethanol. Its determination in hair is of increasing interest for detecting and monitoring alcohol abuse. The quantification of EtG in hair requires analytical methods showing highest sensitivity and specificity. We present a fully validated method based on gas chromatography-negative chemical ionization tandem mass spectrometry (GC-NCI-MS/MS). The method was validated using French Society of Pharmaceutical Sciences and Techniques (SFSTP) guidelines which are based on the determination of the total measurement error and accuracy profiles. Methods: Washed and powdered hair is extracted in water using an ultrasonic incubation. After purification by Oasis MAX solid phase extraction, the derivatized EtG is detected and quantified by GC-NCI-MS/MS method in the selected reaction monitoring mode. The transitions m/z 347 / 163 and m/z 347 / 119 were used for the quantification and identification of EtG. Four quality controls (QC) prepared with hair samples taken post mortem from 2 subjects with a known history of alcoholism were used. A proficiency test with 7 participating laboratories was first run to validate the EtG concentration of each QC sample. Considering the results of this test, these samples were then used as internal controls for validation of the method. Results: The mean EtG concentrations measured in the 4 QC were 259.4, 130.4, 40.8, and 8.4 pg/mg hair. Method validation has shown linearity between 8.4 and 259.4 pg/mg hair (r2 > 0.999). The lower limit of quantification was set up at 8.4 pg/mg. Repeatability and intermediate precision were found less than 13.2% for all concentrations tested. Conclusion: The method proved to be suitable for routine analysis of EtG in hair. GC-NCI-MS/MS method was then successfully applied to the analysis of EtG in hair samples collected from different alcohol consumers

    Diagnostic performance of ethyl glucuronide in hair for the investigation of alcohol drinking behavior: a comparison with traditional biomarkers.

    Get PDF
    Ethyl glucuronide (EtG) in hair has emerged as a useful biomarker for detecting alcohol abuse and monitoring abstinence. However, there is a need to establish a reliable cutoff value for the detection of chronic and excessive alcohol consumption

    Influence of ethanol dose and pigmentation on the incorporation of ethyl glucuronide into rat hair.

    No full text
    Ethyl glucuronide (EtG) is a minor and specific metabolite of ethanol. It is incorporated into growing hair, allowing a retrospective detection of alcohol consumption. However, the suitability of quantitative EtG measurements in hair to determine the quantity of alcohol consumed has not clearly been demonstrated yet. The purpose of this study was to evaluate the influence of ethanol dose and hair pigmentation on the incorporation of EtG into rat hair. Ethanol and EtG kinetics in blood were investigated after a single administration of ethanol. Eighteen rats were divided into four groups receiving 0 (control group), 1, 2, or 3g ethanol/kg body weight. Ethanol was administered on 4 consecutive days per week for 3 weeks by intragastric route. Twenty-eight days after the initial ethanol administration, newly grown hair was shaved. Pigmented and nonpigmented hair were analyzed separately by gas chromatography coupled to tandem mass spectrometry. Blood samples were collected within 12h after the ethanol administration. EtG and ethanol blood levels were measured by liquid chromatography coupled to tandem mass spectrometry and headspace gas chromatography-flame ionization detector, respectively. No statistically significant difference was observed in EtG concentrations between pigmented and nonpigmented hair (Spearman's rho=0.95). Thus, EtG incorporation into rat hair was not affected by hair pigmentation. Higher doses of ethanol resulted in greater blood ethanol area under the curve of concentration versus time (AUC) and in greater blood EtG AUC. A positive correlation was found between blood ethanol AUC and blood EtG AUC (Spearman's rho=0.84). Increased ethanol administration was associated with an increased EtG concentration in hair. Blood ethanol AUC was correlated with EtG concentration in hair (Pearson's r=0.89). EtG concentration in rat hair appeared to reflect the EtG concentration in blood. Ethanol was metabolized at a median rate of 0.22 g/kg/h, and the median elimination half-life of EtG was 1.21 h. This study supports that the bloodstream is likely to display a major role in the hair EtG incorporation

    The importance of surface reflectance anisotropy for cloud and NO2 retrievals from GOME-2 and OMI

    Get PDF
    The angular distribution of the light reflected by the Earth's surface influences top-of-atmosphere (TOA) reflectance values. This surface reflectance anisotropy has implications for UV/Vis satellite retrievals of albedo, clouds, and trace gases such as nitrogen dioxide (NO2). These retrievals routinely assume the surface to reflect light isotropically. Here we show that cloud fractions retrieved from GOME-2A and OMI with the FRESCO and OMCLDO2 algorithms have an east-west bias of 10% to 50 %, which are highest over vegetation and forested areas, and that this bias originates from the assumption of isotropic surface reflection. To interpret the across-track bias with the DAK radiative transfer model, we implement the bidirectional reflectance distribution function (BRDF) from the Ross-Li semi-empirical model. Testing our implementation against state-of-the-art RTMs LIDORT and SCIATRAN, we find that simulated TOA reflectance generally agrees to within 1 %. We replace the assumption of isotropic surface reflection in the equations used to retrieve cloud fractions over forested scenes with scattering kernels and corresponding BRDF parameters from a daily high-resolution database derived from 16 years' worth of MODIS measurements. By doing this, the east-west bias in the simulated cloud fractions largely vanishes. We conclude that across-track biases in cloud fractions can be explained by cloud algorithms that do not adequately account for the effects of surface reflectance anisotropy. The implications for NO2 air mass factor (AMF) calculations are substantial. Under moderately polluted NO2 and backwardscattering conditions, clear-sky AMFs are up to 20% higher and cloud radiance fractions up to 40% lower if surface anisotropic reflection is accounted for. The combined effect of these changes is that NO2 total AMFs increase by up to 30% for backward-scattering geometries (and decrease by up to 35% for forward-scattering geometries), which is stronger than the effect of either contribution alone. In an unpolluted troposphere, surface BRDF effects on cloud fraction counteract (and largely cancel) the effect on the clearsky AMF. Our results emphasise that surface reflectance anisotropy needs to be taken into account in a coherent manner for more realistic and accurate retrievals of clouds and NO2 from UV/Vis satellite sensors. These improvements will be beneficial for current sensors, in particular for the recently launched TROPOMI instrument with a high spatial resolution.</p
    corecore