15 research outputs found

    Investigating the demographic history of Japan using ancient oral microbiota

    Get PDF
    While microbial communities in the human body (microbiota) are now commonly associated with health and disease in industrialised populations, we know very little about how these communities co-evolved and changed with humans throughout history and deep prehistory. We can now examine these communities by sequencing ancient DNA preserved within calcified dental plaque (calculus), providing insights into the origins of disease and their links to human history. Here, we examine ancient DNA preserved within dental calculus samples and their associations with two major cultural periods in Japan: the Jomon period hunter–gatherers approximately 3000 years before present (BP) and the Edo period agriculturalists 400–150 BP. We investigate how human oral microbiomes have changed in Japan through time and explore the presence of microorganisms associated with oral diseases (e.g. periodontal disease, dental caries) in ancient Japanese populations. Finally, we explore oral microbial strain diversity and its potential links to ancient demography in ancient Japan by performing phylogenomic analysis of a widely conserved oral species—Anaerolineaceae oral taxon 439. This research represents, to our knowledge, the first study of ancient oral microbiomes from Japan and demonstrates that the analysis of ancient dental calculus can provide key information about the origin of non-infectious disease and its deep roots with human demography. This article is part of the theme issue ‘Insights into health and disease from ancient biomolecules’.Raphael Eisenhofer, Hideaki Kanzawa-Kiriyama, Ken-ichi Shinoda and Laura S. Weyric

    Cranio-morphometric and aDNA corroboration of the Austronesian dispersal model in ancient Island Southeast Asia: Support from Gua Harimau, Indonesia

    Get PDF
    The Austronesian language is spread from Madagascar in the west, Island Southeast Asia (ISEA) in the east (e.g. the Philippines and Indonesian archipelagoes) and throughout the Pacific, as far east as Easter Island. While it seems clear that the remote ancestors of Austronesian speakers originated in Southern China, and migrated to Taiwan with the development of rice farming by c. 5500 BP and onto the northern Philippines by c. 4000 BP (the Austronesian Dispersal Hypothesis or ADH), we know very little about the origins and emergence of Austronesian speakers in the Indonesian Archipelago. Using a combination of cranial morphometric and ancient mtDNA analyses on a new dataset from Gua Hairmau, that spans the pre-Neolithic through to Metal Period (5712—5591cal BP to 1864—1719 cal BP), we rigorously test the validity of the ADH in ISEA. A morphometric analysis of 23 adult male crania, using 16 of Martin’s standard measurements, was carried out with results compared to an East and Southeast Asian dataset of 30 sample populations spanning the Late Pleistocene through to Metal Period, in addition to 39 modern samples from East and Southeast Asia, near Oceania and Australia. Further, 20 samples were analyzed for ancient mtDNA and assigned to identified haplogroups. We demonstrate that the archaeological human remains from Gua Harimau cave, Sumatra, Indonesia provide clear evidence for at least two (cranio-morphometrically defined) and perhaps even three (in the context of the ancient mtDNA results) distinct populations from two separate time periods. The results of these analyses provide substantive support for the ADH model in explaining the origins and population history of ISEA peoples.This study was supported in part by JSPS KAKENHI Grant No. 23247040 and No. 16H02527 to HM and Australian Research Council Grant No. FT120100299 to MFO and DP150104458 to HCH

    Triangulation supports agricultural spread of the Transeurasian languages

    Get PDF
    The origin and early dispersal of speakers of Transeurasian languages, i.e., Japanese, Korean, Tungusic, Mongolic and Turkic, is among the most disputed issues of Eurasian population history. A key problem is the relationship between linguistic dispersals, agricultural expansions and population movements. Here we address this question through ‘triangulating’ genetics, archaeology and linguistics in a unified perspective. We report new, wide-ranging datasets from these disciplines, including the most comprehensive Transeurasian agropastoral and basic vocabulary presented to date, an archaeological database of 255 Neolithic and Bronze Age sites from Northeast Asia, and the first collection of ancient genomes from Korea, the Ryukyu islands and early cereal farmers in Japan, complementing previously published genomes from East Asia. Challenging the traditional ‘Pastoralist Hypothesis’, we show that the common ancestry and primary dispersals of Transeurasian languages can be traced back to the first farmers moving across Northeast Asia from the Early Neolithic onwards, but that this shared heritage has been masked by extensive cultural interaction since the Bronze Age. As well as marking significant progress in the three individual disciplines, by combining their converging evidence, we show that the early spread of Transeurasian speakers was driven by agriculture.Introduction Linguistics Archaeology Genetics Discussion: Triangulation Method

    Ancient Jomon genome sequence analysis sheds light on migration patterns of early East Asian populations

    Get PDF
    Funder: The excavation of the Ikawazu Jomon individual was supported by Grant-in-Aid for Scientific Research (B) (25284157) to YY. The Ikawazu Jomon genome project was organized by HI, and TH & HO who were supported by MEXT KAKENHI Grant Numbers 16H06408 and 17H05132, by Grant-in-Aid for Scientific Research on Innovative Areas (Cultural History of Paleoasia), and by Grant-in-Aid for Challenging Exploratory Research (23657167) and for Scientific Research (B) (17H03738). The Ikawazu Jomon genome sequencing was supported by JSPS KAKENHI Grant Number 16H06279 to ATo, and partly supported in the CHOZEN project in Kanazawa University, and in the Cooperative Research Project Program of the Medical Institute of Bioregulation, Kyushu University. Computations for the Ikawazu Jomon genome were partially performed on the NIG supercomputer at ROIS National Institute of Genetics.Abstract: Anatomically modern humans reached East Asia more than 40,000 years ago. However, key questions still remain unanswered with regard to the route(s) and the number of wave(s) in the dispersal into East Eurasia. Ancient genomes at the edge of the region may elucidate a more detailed picture of the peopling of East Eurasia. Here, we analyze the whole-genome sequence of a 2,500-year-old individual (IK002) from the main-island of Japan that is characterized with a typical Jomon culture. The phylogenetic analyses support multiple waves of migration, with IK002 forming a basal lineage to the East and Northeast Asian genomes examined, likely representing some of the earliest-wave migrants who went north from Southeast Asia to East Asia. Furthermore, IK002 shows strong genetic affinity with the indigenous Taiwan aborigines, which may support a coastal route of the Jomon-ancestry migration. This study highlights the power of ancient genomics to provide new insights into the complex history of human migration into East Eurasia

    Ethics of DNA research on human remains: five globally applicable guidelines

    No full text
    We are a group of archaeologists, anthropologists, curators and geneticists representing diverse global communities and 31 countries. All of us met in a virtual workshop dedicated to ethics in ancient DNA research held in November 2020. There was widespread agreement that globally applicable ethical guidelines are needed, but that recent recommendations grounded in discussion about research on human remains from North America are not always generalizable worldwide. Here we propose the following globally applicable guidelines, taking into consideration diverse contexts. These hold that: (1) researchers must ensure that all regulations were followed in the places where they work and from which the human remains derived; (2) researchers must prepare a detailed plan prior to beginning any study; (3) researchers must minimize damage to human remains; (4) researchers must ensure that data are made available following publication to allow critical re-examination of scientific findings; and (5) researchers must engage with other stakeholders from the beginning of a study and ensure respect and sensitivity to stakeholder perspectives. We commit to adhering to these guidelines and expect they will promote a high ethical standard in DNA research on human remains going forward.Songül Alpaslan-Roodenberg, David Anthony, Hiba Babiker, Eszter Bánffy, Thomas Booth, Patricia Capone ... et al
    corecore