651 research outputs found

    Thermodynamic approach to the dewetting instability in ultrathin films

    Full text link
    The fluid dynamics of the classical dewetting instability in ultrathin films is a non-linear process. However, the physical manifestation of the instability in terms of characteristic length and time scales can be described by a linearized form of the initial conditions of the films's dynamics. Alternately, the thermodynamic approach based on equating the rate of free energy decrease to the viscous dissipation [de Gennes, C. R. Acad. Paris.v298, 1984] can give similar information. Here we have evaluated dewetting in the presence of thermocapillary forces arising from a film-thickness (h) dependent temperature. Such a situation can be found during pulsed laser melting of ultrathin metal films where nanoscale effects lead to a local h-dependent temperature. The thermodynamic approach provides an analytical description of this thermocapillary dewetting. The results of this approach agree with those from linear theory and experimental observations provided the minimum value of viscous dissipation is equated to the rate of free energy decrease. The flow boundary condition that produces this minimum viscous dissipation is when the film-substrate tangential stress is zero. The physical implication of this finding is that the spontaneous dewetting instability follows the path of minimum rate of energy loss.Comment: 8 pages, 3 figures. Under revie

    Enhanced and tunable optical quantum efficiencies from plasmon bandwidth engineering in bimetallic CoAg nanoparticles

    Get PDF
    Plasmonic nanoparticles are amongst the most effective ways to resonantly couple optical energy into and out of nanometer sized volumes. However, controlling and/or tuning the transfer of this incident energy to the surrounding near and far field is one of the most interesting challenges in this area. Due to the dielectric properties of metallic silver (Ag), its nanoparticles have amongst the highest radiative quantum efficiencies (η), i.e., the ability to radiatively transfer the incident energy to the surrounding. Here we report the discovery that bimetallic nanoparticles of Ag made with immiscible and plasmonically weak Co metal can show comparable and/or even higher η values. The enhancement is a result of the narrowing of the plasmon bandwidth from these bimetal systems. The phenomenological explanation of this effect based on the dipolar approximation points to the reduction in radiative losses within the Ag nanoparticles when in contact with cobalt. This is also supported by a model of coupling between poor and good conductors based on the surface to volume ratio. This study presents a new type of bandwidth engineering, one based on using bimetalnanostructures, to tune and/or enhance the quality factor and quantum efficiency for near and far-field plasmonic applications

    Thickness-dependent spontaneous dewetting morphology of ultrathin Ag films

    Full text link
    We show here that the morphological pathway of spontaneous dewetting of ultrathin Ag films on SiO2 under nanosecond laser melting is found to be film thickness dependent. For films with thickness h between 2 <= h <= 9.5 nm, the morphology during the intermediate stages of dewetting consisted of bicontinuous structures. For films 11.5 <= h <= 20 nm, the intermediate stages consisted of regularly-sized holes. Measurement of the characteristic length scales for different stages of dewetting as a function of film thickness showed a systematic increase, which is consistent with the spinodal dewetting instability over the entire thickness range investigated. This change in morphology with thickness is consistent with observations made previously for polymer films [A. Sharma et al, Phys. Rev. Lett., v81, pp3463 (1998); R. Seemann et al, J. Phys. Cond. Matt., v13, pp4925, (2001)]. Based on the behavior of free energy curvature that incorporates intermolecular forces, we have estimated the morphological transition thickness for the intermolecular forces for Ag on SiO2 . The theory predictions agree well with observations for Ag. These results show that it is possible to form a variety of complex Ag nanomorphologies in a consistent manner, which could be useful in optical applications of Ag surfaces, such as in surface enhanced Raman sensing.Comment: 20 pages, 5 figure

    An Empirical Model for Strategic Network Formation

    Get PDF
    We develop and analyze a tractable empirical model for strategic network formation that can be estimated with data from a single network at a single point in time. We model the network formation as a sequential process where in each period a single randomly selected pair of agents has the opportunity to form a link. Conditional on such an opportunity, a link will be formed if both agents view the link as beneficial to them. They base their decision on their own characateristics, the characteristics of the potential partner, and on features of the current state of the network, such as whether the two potential partners already have friends in common. A key assumption is that agents do not take into account possible future changes to the network. This assumption avoids complications with the presence of multiple equilibria, and also greatly simplifies the computational burden of anlyzing these models. We use Bayesian markov-chain-monte-carlo methods to obtain draws from the posterior distribution of interest. We apply our methods to a social network of 669 high school students, with, on average, 4.6 friends. We then use the model to evaluate the effect of an alternative assignment to classes on the topology of the network.

    Face selectivity in electrophilic additions to methylenenorsnoutanes: relative importance of through-space, through-bond and electrostatic interactions

    Get PDF
    4-Substituted 9-methylenenorsnoutanes undergo a variety of electrophilic additions with a small but consistent syn preference; ab initio MESP maps indicate that electrostatic factors and through-space interaction between the double bond and cyclopropane Walsh orbitals are unimportant in determining the face selectivity, while AM1 transition state energetics suggest that the observed preferences are determined primarily by through-bond interactions
    corecore