2,734 research outputs found

    Conditional müller cell ablation causes independent neuronal and vascular pathologies in a novel transgenic model

    Get PDF
    Müller cells are the major glia of the retina that serve numerous functions essential to retinal homeostasis, yet the contribution of Müller glial dysfunction to retinal diseases remains largely unknown. We have developed a transgenic model using a portion of the regulatory region of the retinaldehyde binding protein 1 gene for conditional Müller cell ablation and the consequences of primary Müller cell dysfunction have been studied in adult mice. We found that selective ablation of Müller cells led to photoreceptor apoptosis, vascular telangiectasis, blood-retinal barrier breakdown and, later, intraretinal neovascularization. These changes were accompanied by impaired retinal function and an imbalance between vascular endothelial growth factor-A (VEGF-A) and pigment epithelium-derived factor. Intravitreal injection of ciliary neurotrophic factor inhibited photoreceptor injury but had no effect on the vasculopathy. Conversely, inhibition of VEGF-A activity attenuated vascular leak but did not protect photoreceptors. Our findings show that Müller glial deficiency may be an important upstream cause of retinal neuronal and vascular pathologies in retinal diseases. Combined neuropro-tective and anti-angiogenic therapies may be required to treat Müller cell deficiency in retinal diseases and in other parts of the CNS associated with glial dysfunction

    Dirty black holes: Quasinormal modes

    Full text link
    In this paper, we investigate the asymptotic nature of the quasinormal modes for "dirty" black holes -- generic static and spherically symmetric spacetimes for which a central black hole is surrounded by arbitrary "matter" fields. We demonstrate that, to the leading asymptotic order, the [imaginary] spacing between modes is precisely equal to the surface gravity, independent of the specifics of the black hole system. Our analytical method is based on locating the complex poles in the first Born approximation for the scattering amplitude. We first verify that our formalism agrees, asymptotically, with previous studies on the Schwarzschild black hole. The analysis is then generalized to more exotic black hole geometries. We also extend considerations to spacetimes with two horizons and briefly discuss the degenerate-horizon scenario.Comment: 15 pages; uses iopart.cls setstack.sty; V2: one additional reference added, no physics changes; V3: two extra references, minor changes in response to referee comment

    Orbital Structure and Magnetic Ordering in Layered Manganites: Universal Correlation and Its Mechanism

    Full text link
    Correlation between orbital structure and magnetic ordering in bilayered manganites is examined. A level separation between the 3d3z2−r23d_{3z^2-r^2} and 3dx2−y23d_{x^2-y^2} orbitals in a Mn ion is calculated in the ionic model for a large number of the compounds. It is found that the relative stability of the orbitals dominates the magnetic transition temperatures as well as the magnetic structures. A mechanism of the correlation between orbital and magnetism is investigated based on the theoretical model with the two ege_g orbitals under strong electron correlation.Comment: 4 pages, 4 figure

    DR*W201/P65 Tetramer Visualization of Epitope-Specific CD4 T-Cell during M. tuberculosis Infection and Its Resting Memory Pool after BCG Vaccination

    Get PDF
    In vivo kinetics and frequencies of epitope-specific CD4 T cells in lymphoid compartments during M. tuberculosis infection and their resting memory pool after BCG vaccination remain unknown.Macaque DR*W201 tetramer loaded with Ag85B peptide 65 was developed to directly measure epitope-specific CD4 T cells in blood and tissues form macaques after M. tuberculosis infection or BCG vaccination via direct staining and tetramer-enriched approach. The tetramer-based enrichment approach showed that P65 epitope-specific CD4 T cells emerged at mean frequencies of approximately 500 and approximately 4500 per 10(7) PBL at days 28 and 42, respectively, and at day 63 increased further to approximately 22,000/10(7) PBL after M. tuberculosis infection. Direct tetramer staining showed that the tetramer-bound P65-specific T cells constituted about 0.2-0.3% of CD4 T cells in PBL, lymph nodes, spleens, and lungs at day 63 post-infection. 10-fold expansion of these tetramer-bound epitope-specific CD4 T cells was seen after the P65 peptide stimulation of PBL and tissue lymphocytes. The tetramer-based enrichment approach detected BCG-elicited resting memory P65-specific CD4 T cells at a mean frequency of 2,700 per 10(7) PBL.Our work represents the first elucidation of in vivo kinetics and frequencies for tetramer-bound epitope-specific CD4 T cells in the blood, lymphoid tissues and lungs over times after M. tuberculosis infection, and BCG immunization

    Polymorphisms of XRCC1 genes and risk of nasopharyngeal carcinoma in the Cantonese population

    Get PDF
    BACKGROUND: Nasopharyngeal carcinoma (NPC) is one of the most common cancers in southern China. In addition to environmental factors such as Epstein-Barr virus infection and diet, genetic susceptibility has been reported to play a key role in the development of this disease. The x-ray repair cross-complementing group 1 (XRCC1) gene is important in DNA base excision repair. We hypothesized that two common single nucleotide polymorphisms of XRCC1 (codons 194 Arg→Trp and 399 Arg→Gln) are related to the risk of NPC and interact with tobacco smoking. METHODS: We sought to determine whether these genetic variants of the XRCC1 gene were associated with the risk of NPC among the Cantonese population in a hospital-based case control study using polymerase chain reaction-restriction fragment length polymorphism analysis. We conducted this study in 462 NPC patients and 511 healthy controls. RESULTS: After adjustment for sex and age, we found a reduced risk of developing NPC in individuals with the Trp194Trp genotype (OR = 0.48; 95% CI, 0.27–0.86) and the Arg194Trp genotype (OR = 0.79; 95% CI, 0.60–1.05) compared with those with the Arg194Arg genotype. Compared with those with the Arg399Arg genotype, the risk for NPC was not significantly different in individuals with the Arg399Gln genotype (OR = 0.82; 95% CI, 0.62–1.08) and the Gln399Gln genotype (OR = 1.20; 95% CI, 0.69–2.06). Further analyses stratified by gender and smoking status revealed a significantly reduced risk of NPC among males (OR = 0.32; 95% CI, 0.14–0.70) and smokers (OR = 0.34; 95% CI, 0.14–0.82) carrying the XRCC1 194Trp/Trp genotype compared with those carrying the Arg/Arg genotype. No association was observed between Arg399Gln variant genotypes and the risk of NPC combined with smoking and gender. CONCLUSION: Our findings suggest that the XRCC1 Trp194Trp variant genotype is associated with a reduced risk of developing NPC in Cantonese population, particularly in males and smokers. Larger studies are needed to confirm our findings and unravel the underlying mechanisms
    • …
    corecore