6,731 research outputs found
Type I superconductivity in the Dirac semimetal PdTe2
The superconductor PdTe was recently classified as a Type II Dirac
semimetal, and advocated to be an improved platform for topological
superconductivity. Here we report magnetic and transport measurements conducted
to determine the nature of the superconducting phase. Surprisingly, we find
that PdTe is a Type I superconductor with K and a critical
field mT. Our crystals also exhibit the intermediate
state as demonstrated by the differential paramagnetic effect. For we
observe superconductivity of the surface sheath. This calls for a close
examination of superconductivity in PdTe in view of the presence of
topological surface states.Comment: 5 page
Energy conditions in f(R) gravity and Brans-Dicke theories
The equivalence between f(R) gravity and scalar-tensor theories is invoked to
study the null, strong, weak and dominant energy conditions in Brans-Dicke
theory. We consider the validity of the energy conditions in Brans-Dicke theory
by invoking the energy conditions derived from a generic f(R) theory. The
parameters involved are shown to be consistent with an accelerated expanding
universe.Comment: 9 pages, 1 figure, to appear in IJMP
Muon spin rotation study of the topological superconductor SrxBi2Se3
We report transverse-field (TF) muon spin rotation experiments on single
crystals of the topological superconductor SrBiSe with nominal
concentrations and ( K). The TF spectra (
mT), measured after cooling to below in field, did not show any
additional damping of the muon precession signal due to the flux line lattice
within the experimental uncertainty. This puts a lower bound on the magnetic
penetration depth m. However, when we induce disorder in
the vortex lattice by changing the magnetic field below a sizeable
damping rate is obtained for . The data provide microscopic
evidence for a superconducting volume fraction of in the
crystal and thus bulk superconductivity.Comment: 6 pages, includes 4 figure
Superconductivity under pressure in the Dirac semimetal PdTe2
The Dirac semimetal PdTe was recently reported to be a type-I
superconductor (1.64 K, mT) with unusual
superconductivity of the surface sheath. We here report a high-pressure study,
GPa, of the superconducting phase diagram extracted from
ac-susceptibility and transport measurements on single crystalline samples.
shows a pronounced non-monotonous variation with a maximum 1.91 K around 0.91 GPa, followed by a gradual decrease to 1.27 K at 2.5 GPa.
The critical field of bulk superconductivity in the limit ,
, follows a similar trend and consequently the -curves
under pressure collapse on a single curve: .
Surface superconductivity is robust under pressure as demonstrated by the large
superconducting screening signal that persists for applied dc-fields . Surprisingly, for GPa the superconducting transition
temperature at the surface is larger than of the bulk. Therefore
surface superconductivity may possibly have a non-trivial nature and is
connected to the topological surface states detected by ARPES. We compare the
measured pressure variation of with recent results from band structure
calculations and discuss the importance of a Van Hove singularity.Comment: manuscript 9 pages with 8 figures + supplemental material 3 pages
with 6 figure
Twilight for the energy conditions?
The tension, if not outright inconsistency, between quantum physics and
general relativity is one of the great problems facing physics at the turn of
the millennium. Most often, the problems arising in merging Einstein gravity
and quantum physics are viewed as Planck scale issues (10^{19} GeV, 10^{-34} m,
10^{-45} s), and so safely beyond the reach of experiment. However, over the
last few years it has become increasingly obvious that the difficulties are
more widespread: There are already serious problems of deep and fundamental
principle at the semi-classical level, and worse, certain classical systems
(inspired by quantum physics, but in no sense quantum themselves) exhibit
seriously pathological behaviour. One manifestation of these pathologies is in
the so-called ``energy conditions'' of general relativity. Patching things up
in the gravity sector opens gaping holes elsewhere; and some ``fixes'' are more
radical than the problems they are supposed to cure.Comment: Honourable mention in the 2002 Gravity Research Foundation essay
contest. 12 pages. Plain LaTeX 2
Brans-Dicke cylindrical wormholes
Static axisymmetric thin-shell wormholes are constructed within the framework
of the Brans-Dicke scalar-tensor theory of gravity. Examples of wormholes
associated with vacuum and electromagnetic fields are studied. All
constructions must be threaded by exotic matter, except in the case of
geometries with a singularity of finite radius, associated with an electric
field, which can have a throat supported by ordinary matter. These results are
achieved with any of the two definitions of the flare-out condition considered.Comment: 11 pages, 3 figures; v3: corrected version, conclusions unchange
Superconductivity and magnetic order in the non-centrosymmetric Half Heusler compound ErPdBi
We report superconductivity at K and magnetic order at K in the semi-metallic noncentrosymmetric Half Heusler compound ErPdBi.
The upper critical field, , has an unusual quasi-linear temperature
variation and reaches a value of 1.6 T for . Magnetic order is
found below and is suppressed at T for . Since , the interaction of superconductivity and magnetism
is expected to give rise to a complex ground state. Moreover, electronic
structure calculations show ErPdBi has a topologically nontrivial band
inversion and thus may serve as a new platform to study the interplay of
topological states, superconductivity and magnetic order.Comment: 6 pages, 5 figures; accepted for publication in Europhysics Letter
Dirty black holes: Quasinormal modes for "squeezed" horizons
We consider the quasinormal modes for a class of black hole spacetimes that,
informally speaking, contain a closely ``squeezed'' pair of horizons. (This
scenario, where the relevant observer is presumed to be ``trapped'' between the
horizons, is operationally distinct from near-extremal black holes with an
external observer.) It is shown, by analytical means, that the spacing of the
quasinormal frequencies equals the surface gravity at the squeezed horizons.
Moreover, we can calculate the real part of these frequencies provided that the
horizons are sufficiently close together (but not necessarily degenerate or
even ``nearly degenerate''). The novelty of our analysis (which extends a
model-specific treatment by Cardoso and Lemos) is that we consider ``dirty''
black holes; that is, the observable portion of the (static and spherically
symmetric) spacetime is allowed to contain an arbitrary distribution of matter.Comment: 15 pages, uses iopart.cls and setstack.sty V2: Two references added.
Also, the appendix now relates our computation of the Regge-Wheeler potential
for gravity in a generic "dirty" black hole to the results of Karlovini
[gr-qc/0111066
A Lemaitre-Tolman-Bondi cosmological wormhole
We present a new analytical solution of the Einstein field equations
describing a wormhole shell of zero thickness joining two
Lema{\i}tre-Tolman-Bondi universes, with no radial accretion. The material on
the shell satisfies the energy conditions and, at late times, the shell becomes
comoving with the dust-dominated cosmic substratum.Comment: 5 pages, latex, no figures, to appear in Phys. Rev.
- …