395 research outputs found

    Thermoelectric performance of Na-doped GeSe

    Get PDF
    Recently, hole-doped GeSe materials have been predicted to exhibit extraordinary thermoelectric performance owing largely to extremely low thermal conductivity. However, experimental research on the thermoelectric properties of GeSe has received less attention. Here, we have synthesized polycrystalline Na-doped GeSe compounds, characterized their crystal structure, and measured their thermoelectric properties. The Seebeck coefficient decreases with increasing Na content up to x = 0.01 due to an increase in the hole carrier concentration and remains roughly constant at higher concentrations of Na, consistent with the electrical resistivity variation. However, the electrical resistivity is large for all samples, leading to low power factors. Powder X-ray diffraction and scanning electron microscopy/energy-dispersive spectrometry results show the presence of a ternary impurity phase within the GeSe matrix for all doped samples, which suggests that the optimal carrier concentration cannot be reached by doping with Na. Nevertheless, the lattice thermal conductivity and carrier mobility of GeSe is similar to those of polycrystalline samples of the leading thermoelectric material SnSe, leading to quality factors of comparable magnitude. This implies that GeSe shows promise as a thermoelectric material if a more suitable dopant can be found

    Increasing thermoelectric performance using coherent transport

    Full text link
    We show that coherent electron transport through zero-dimensional systems can be used to tailor the shape of the system's transmission function. This quantum-engineering approach can be used to enhance the performance of quantum dots or molecules in thermal-to-electric power conversion. Specifically, we show that electron interference in a two-level system can substantially improve the maximum thermoelectric power and the efficiency at maximum power by suppressing parasitic charge flow near the Fermi energy, and by reducing electronic heat conduction. We discuss possible realizations of this approach in molecular junctions or quantum dots.Comment: 4+ pages, 4 figure

    Concept study for a high-efficiency nanowire-based thermoelectric

    Full text link
    Materials capable of highly efficient, direct thermal-to-electric energy conversion would have substantial economic potential. Theory predicts that thermoelectric efficiencies approaching the Carnot limit can be achieved at low temperatures in one-dimensional conductors that contain an energy filter such as a double-barrier resonant tunneling structure. The recent advances in growth techniques suggest that such devices can now be realized in heterostructured, semiconductor nanowires. Here we propose specific structural parameters for InAs/InP nanowires that may allow the experimental observation of near-Carnot efficient thermoelectric energy conversion in a single nanowire at low temperature

    Thermoelectric three-terminal hopping transport through one-dimensional nanosystems

    Full text link
    A two-site nanostructure (e.g, a "molecule") bridging two conducting leads and connected to a phonon bath is considered. The two relevant levels closest to the Fermi energy are connected each to its lead. The leads have slightly different temperatures and chemical potentials and the nanos- tructure is also coupled to a thermal (third) phonon bath. The 3 x 3 linear transport ("Onsager") matrix is evaluated, along with the ensuing new figure of merit, and found to be very favorable for thermoelectric energy conversion.Comment: Accepted by Phys. Rev.

    Thermoelectric properties of the bismuth telluride nanowires in the constant-relaxation-time approximation

    Full text link
    Electronic structure of bismuth telluride nanowires with the growth directions [110] and [015] is studied in the framework of anisotropic effective mass method using the parabolic band approximation. The components of the electron and hole effective mass tensor for six valleys are calculated for both growth directions. For a square nanowire, in the temperature range from 77 K to 500 K, the dependence of the Seebeck coefficient, the electron thermal and electrical conductivity as well as the figure of merit ZT on the nanowire thickness and on the excess hole concentration are investigated in the constant-relaxation-time approximation. The carrier confinement is shown to play essential role for square nanowires with thickness less than 30 nm. The confinement decreases both the carrier concentration and the thermal conductivity but increases the maximum value of Seebeck coefficient in contrast to the excess holes (impurities). The confinement effect is stronger for the direction [015] than for the direction [110] due to the carrier mass difference for these directions. The carrier confinement increases maximum value of ZT and shifts it towards high temperatures. For the p-type bismuth telluride nanowires with growth direction [110], the maximum value of the figure of merit is equal to 1.3, 1.6, and 2.8, correspondingly, at temperatures 310 K, 390 K, 480 K and the nanowire thicknesses 30 nm, 15 nm, and 7 nm. At the room temperature, the figure of merit equals 1.2, 1.3, and 1.7, respectively.Comment: 13 pages, 7 figures, 2 tables, typos added, added references for sections 2-

    Thermoelectric prospects of nanomaterials with spin-orbit surface bands

    Full text link
    Nanostructured composites and nanowire arrays of traditional thermoelectrics like Bi, Bi(1-x)Sb(x) and Bi(2)Te(3) have metallic Rashba surface spin-orbit bands featuring high mobilities rivaling that of the bulk for which topological insulator behavior has been proposed. Nearly pure surface electronic transport has been observed at low temperatures in Bi nanowires with diameter around the critical diameter, 50 nm, for the semimetal-to semiconductor transition. The surface contributes strongly to the thermopower, actually dominating for temperatures T < 100 K in these nanowires. The surface thermopower was found to be -1 T microvolt/(K^2), a value that is consistent with theory. We show that surface electronic transport together with boundary phonon scattering leads to enhanced thermoelectric performance at low temperatures of Bi nanowire arrays. We compare with bulk n-BiSb alloys, optimized CsBi(4)Te(6) and optimized Bi(2)Te(3). Surface dominated electronic transport can be expected in nanomaterials of the other traditional thermoelectrics.Comment: 18 pages, 3 figure

    A nonequilibrium Green's function study of thermoelectric properties in single-walled carbon nanotubes

    Full text link
    The phonon and electron transport in single-walled carbon nanotubes (SWCNT) are investigated using the nonequilibrium Green's function approach. In zigzag SWCNT (nn, 0) with mod(n,3)0mod(n,3)\not=0, the thermal conductance is mainly attributed to the phonon transport, while the electron only has few percentage contribution. The maximum value of the figure of merit (ZTZT) is about 0.2 in this type of SWCNT. The ZTZT is considerably larger in narrower SWCNT because of enhanced Seebeck coefficient. ZTZT is smaller in the armchair SWCNT, where Seebeck coefficient is small due to zero band gap. It is found that the cluster isotopic doping can reduce the phonon thermal conductance obviously and enhance the value of ZTZT. The uniaxial elongation and compress strain depresses phonons in whole frequency region, leading to the reduction of the phonon thermal conductance in whole temperature range. Interestingly, the elongation strain can affect the phonon transport more seriously than the compress strain, because the high frequency GG mode is completely filtered out under elongation strain ϵ>0.05\epsilon >0.05. The strain also has important effect on the subband edges of the electron band structure by smoothing the steps in the electron transmission function. The ZTZT is decreased by strain as the reduction in the electronic conductance overcomes the reduction in the thermal conductance.Comment: 30 pages, 15 figs, accepted by J. Appli. Phy

    A simple model for the vibrational modes in honeycomb lattices

    Get PDF
    The classical lattice dynamics of honeycomb lattices is studied in the harmonic approximation. Interactions between nearest neighbors are represented by springs connecting them. A short and necessary introduction of the lattice structure is presented. The dynamical matrix of the vibrational modes is then derived, and its eigenvalue problem is solved analytically. The solution may provide deeper insight into the nature of the vibrational modes. Numerical results for the vibrational frequencies are presented. To show that how effective our method used for the case of honeycomb lattice is, we also apply it to triangular and square lattice structures. A few suggested problems are listed in the concluding section.Comment: 9 pages, 12 figures, submitted to American Journal of Physic

    Pressure effects on the transport coefficients of Ba(Fe1-xCox)2As2

    Full text link
    We report the temperature dependence of the resistivity and thermoelectric power under hydrostatic pressure of the itinerant antiferromagnet BaFe2As2 and the electron-doped superconductor Ba(Fe0.9Co0.1)2As2. We observe a hole-like contribution to the thermopower below the structural-magnetic transition in the parent compound that is suppressed in magnitude and temperature with pressure. Pressure increases the contribution of electrons to transport in both the doped and undoped compound. In the 10% Co-doped sample, we used a two-band model for thermopower to estimate the carrier concentrations and determine the effect of pressure on the band structure

    Lorenz function of Bi2_{2}Te3_{3}/Sb2_{2}Te3_{3} superlattices

    Full text link
    Combining first principles density functional theory and semi-classical Boltzmann transport, the anisotropic Lorenz function was studied for thermoelectric Bi2_{2}Te3_{3}/Sb2_{2}Te3_{3} superlattices and their bulk constituents. It was found that already for the bulk materials Bi2_{2}Te3_{3} and Sb2_{2}Te3_{3}, the Lorenz function is not a pellucid function on charge carrier concentration and temperature. For electron-doped Bi2_{2}Te3_{3}/Sb2_{2}Te3_{3} superlattices large oscillatory deviations for the Lorenz function from the metallic limit were found even at high charge carrier concentrations. The latter can be referred to quantum well effects, which occur at distinct superlattice periods
    corecore