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A simple model for the vibrational modes in honeycomb lattices
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The classical lattice dynamics of honeycomb lattices is studied in the harmonic approximation.
Interactions between nearest neighbors are represented by springs connecting them. A short and
necessary introduction of the lattice structure is presented. The dynamical matrix of the vibrational
modes is then derived, and its eigenvalue problem is solved analytically. The solution may provide
deeper insight into the nature of the vibrational modes. Numerical results for the vibrational
frequencies are presented. To show that how effective our method used for the case of honeycomb
lattice is, we also apply it to triangular and square lattice structures. A few suggested problems are
listed in the concluding section.

I. INTRODUCTION

In crystals, atoms vibrate about their equilibrium po-
sition. Calculation of the vibrational frequencies and
modes is an important and presently actively studied sub-
ject in solid-state physics. To interpret various properties
of crystal lattices—for example, specific heat, thermal
expansion coefficients, elastic constants—it is essential to
take into account the lattice vibrations. Fortunately, sev-
eral good textbooks of the subject are available (here we
give just a small selection of the vast literature1,2,3,4,5),
in which the quantum and classical treatments of lat-
tice dynamics are presented lucidly. The vibration of the
atoms depends on the interatomic interaction within the
crystal. The interatomic interaction potential is often
approximated by including only quadratic terms of the
displacement of the atoms. This is called the harmonic

approximation, and is the usual starting point for devel-
oping the theory of lattice dynamics. In the framework
of classical mechanics, lattice dynamics can be treated
through the equations of motion for the atoms. To de-
termine the vibrational frequencies and the correspond-
ing modes one needs to calculate the eigenvalues and the
eigenvectors of the so-called dynamical matrix, which can
be obtained from the interatomic interaction potential.
If the dynamical matrix is known, the eigenvalue prob-
lem is straightforward, though only numerical solutions
are available in many cases. Numerous texts1,2,3,4,5,6,7

provide problems for the calculation of the vibrational
modes in different crystal lattices. Fortunately, there
are some well-known examples—such as linear chains
with/without bases, square and cubic lattices—in which
analytical methods can be used1,2,3,4,5,6,7. These exam-
ples are important for a deeper understanding of the the-
ory of lattice dynamics.

In this paper we shall give another nontrivial example,
namely the lattice dynamics of the honeycomb structure
shown in Fig. 1. The classical lattice dynamics of the
honeycomb lattice is modelled by using the harmonic ap-
proximation and assuming only nearest neighbor inter-
actions between the atoms. In this simplest model the
interaction between nearest neighbors can be represented

by springs connecting them. It is assumed that black and
white atoms have different masses, m1 and m2, respec-
tively. The problem can be solved analytically and its
solutions may provide insight into the nature of the vi-
brational modes. As it will be seen below, the analytical
method is possible because of the symmetry properties of
the honeycomb lattice. As a pre-requisite to the solution,
a short and necessary introduction of the lattice struc-
ture is presented. More details on crystal structures can
be found in many books on solid-state physics1,2,3,4,5,8.
Finally, in connection with the honeycomb lattice, the
intensive research on nanotubes9 should be mentioned.
Nanotubes are quasi-one-dimensional cylindrical struc-
tures in which a two-dimensional honeycomb lattice of
crystalline graphite is rolled up into a cylinder. The
work presented in this paper may serve as an introduc-
tory study of the far more complex lattice dynamics of
graphite and nanotubes.

FIG. 1: Honeycomb lattice with two different atoms (black
and white circles). The straight lines correspond to un-
strained springs of force constant D connecting the nearest
neighbor atoms in equilibrium state. The masses of the black
and white atoms are m1 and m2.

The general method developed for calculating the vi-
bration modes of honeycomb lattices proves to be use-
ful for studying other lattice structures. Therefore, we
shall present a few numerical results for the vibrational
frequencies of equilateral triangular lattices and square
lattices in which both the nearest neighbor and second
nearest neighbor interactions are taken into account.
Our approach used in this paper may provide a didac-
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tically useful examples for introducing the basic lattice
dynamical notions developed in solid-state physics.
The rest of the text is organized as follows. In Sec.

II a formula for the spring force acting on the atoms is
derived. In Sec. III the description of the honeycomb lat-
tice and the equations of motion for the atoms are given.
In Sec. IV our analytic method for solving the eigenvalue
problem is presented. In Sec. V some numerical results
are mentioned. A few results are presented in Sec. VI
for the case of triangular and square lattices. The con-
clusions and some suggested problems are given in Sec.
VII.

II. THE FORCE

First, the force acting on an atom by a spring connect-
ing the atoms is calculated. The springs are assumed to
be ideal, ie. the spring force is proportional to the change
in the spring’s length. Denoting the vector between the
two endpoints of the unstrained (strained) spring by d

(r), the change in the length of the spring is |r| − |d|.
If the spring constant of the ideal springs is D then the
restoring force is

F = −D (|r| − |d|) r

|r| . (1)

It is useful to express the force in terms of the dis-
placement vector u = r − d. In the harmonic ap-
proximation the strain of the spring is assumed to be
small, ie. second order terms are neglected in u. Ex-
plicitely: |u|/d = |r − d|/d ≪ 1. Thus, we have |r| =

d
√

1 + 2du
d2 + u2

d2 ≈ d
(

1 + du
d2

)

and the force can be writ-

ten as

F = −D
(du)d

d2
. (2)

It is convenient to define the outer or direct product a⊗b

of two vectors a and b10,11. This is a matrix whose α, β
element is a product of the αth component of a and the
βth component of b, that is

(a⊗ b)αβ = a∗αbβ , (3)

where ∗ denotes the complex conjugation (of complex
vectors). The following direct-product identities will
prove useful in the calculations below:

(a⊗ b) c = a (bc), (4a)

(a⊗ b)(c ⊗ d) = (bc)a⊗ d. (4b)

In direct-product notation, the (2) force can be rewritten
as

F = −D
d⊗ d

d2
u. (5)

From this form it is clearly seen that the force in the har-
monic approximation is proportional to the displacement

vector u, and that the constant of proportionality is the
product of the spring constant D and the direct product
of the unit vector d/|d| with itself. In the following sec-
tion the equations of motion of the atoms are formulated
by using the above form of the spring force acting on the
atoms.

III. THE EQUATIONS OF MOTION

In Fig. 1 the position vector R of the black atoms in
the honeycomb structure can be given in the form

R = j1a1 + j2a2, (6)

where a1 and a2 are the independent primitive trans-
lation vectors shown in Fig. 2, while j1 and j2 range
through all integer values (i.e. positive and negative in-
tegers, as well as zero). The primitive translation vec-

tors have the same magnitude |a1| = |a2| =
√
3a, where

a = |d1| is the length of hexagons’ side. The primitive
cell of the honeycomb lattice can be chosen as the paral-
lelogram whose non-parallel sides are the two primitive
translation vectors a1 and a2 (in Fig. 2 the sides of the
parallelogram are a1, a2 and the two dotted lines). In the
honeycomb lattice each primitive cell with a two-point ba-
sis contains two atoms (black and white circles in Fig. 1);
one is at the common starting point of vectors a1 and a2,
while the other one is at 1/3(a1 + a2) in Fig. 2.

a
1

a
2

d

d

d 2

3

1

FIG. 2: The primitive translation vectors of the honeycomb
lattice are vectors a1 and a2; the primitive cell is a parallel-
ogram whose sides are these two vectors and the two dotted
lines. The three vectors d1,d2,d3 will be useful in the calcu-
lations below.

It is useful to introduce three unit vectors (n1,n2,n3)
by

ni =
di

|di|
, i = 1, 2, 3. (7)

The vectors d1,d2,d3, are shown in Fig. 2; their magni-
tude is |di| = a. Thus, the primitive translation vectors
are a1 = d2 − d1 = a(n2 − n1) and a2 = d3 − d1 =
a(n3 −n1). Later on the following identities for vector n
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will frequently be used:

3
∑

j=1

nj = 0, (8a)

3
∑

j=1

nj ⊗ nj =
3

2
E, (8b)

(njnk) =

{

1 if j = k,

− 1
2 if j 6= k,

(8c)

and E is the 2× 2 unit matrix.

The displacements of the two atoms in the primitive
cell specified by the lattice vector R are denoted by u(R)
and v(R). From (5) it can be shown that the components
of the displacements perpendicular to the plane do not
contribute to the force in the harmonic approximation.
Each atom interacts with its three neighbors. Denoting
the masses of the two basis atoms by m1 and m2, and
using (5) for the spring force acting on the atoms, the
following equations of motion are obtained for u(R) and
v(R):

m1 ü(R) = −D n1 ⊗ n1

[

u(R)− v(R)
]

−D n2 ⊗ n2

[

u(R)− v(R − a1)
]

−D n3 ⊗ n3

[

u(R)− v(R − a2)
]

,(9a)

m2 v̈(R) = −D n1 ⊗ n1

[

v(R)− u(R)
]

−D n2 ⊗ n2

[

v(R)− u(R + a1)
]

−D n3 ⊗ n3

[

v(R) − u(R+ a2)
]

.(9b)

Eq. (9) is an infinite set of equations for the displacements
u(R) and v(R). Following the traditional method, we
seek a solution representing a wave of angular frequency
ω (q) and wave vector q:

u(R) =
u (q)√
m1

eiω(q)t+iqR, (10a)

v(R) =
v (q)√
m2

eiω(q)t+iqR, (10b)

where the vectors u (q) and v (q) are to be deter-
mined, and q is in the first Brillouin zone. The
usual Born-von Kármán periodic boundary conditions
are applied1,2,3,4,5,8, i.e. u(R+Niai) = u(R) and v(R+
Niai) = v(R), where N1 and N2 are large integers whose
product N1N2 = N is the total number of primitive cells
within the crystal. The periodic boundary conditions re-
strict the allowed wave vectors q in Eq. (10) to the form:

q =
p1
N1

b1 +
p2
N2

b2, (11)

where p1 and p2 are integers, and the bj are the reciprocal
lattice vectors defined by aibj = 2πδij , i, j = 1, 2. It is
convenient to choose p1, p2 such that q is limited to the
first Brillouin zone. For example, if N1 and N2 are even
integers (which will be irrelevant in the limit N → ∞),
−Ni/2 ≤ pi < Ni/2 (i = 1, 2). More details on the
concept of the Brillouin zone can be found in many books
on solid-state physics1,2,3,4,5,8.
Substitution of the solutions (10) into the equations of

motion (9) leads to an eigenvalue problem:

D(q)

[

u (q)
v (q)

]

= ω2 (q)

[

u (q)
v (q)

]

, (12)

where

D(q) =

[

D11(q) D12(q)
D21(q) D22(q)

]

, (13a)

D11(q) =
D

m1

3
∑

j=1

nj ⊗ nj =
3D

2m1
E, (13b)

D22(q) =
D

m2

3
∑

j=1

nj ⊗ nj =
3D

2m2
E, (13c)

D12(q) = − D√
m1m2

eiqd1

3
∑

j=1

nj ⊗ nj e
−iqdj ,(13d)

D21(q) = [D12(q)]
∗
. (13e)

In the last equality of (13b) and (13c) we used Eq. (8b).
The matrix D(q) is commonly called the dynamical ma-

trix. The eigenvectors of the dynamical matrix are the
unknown vectors u (q) and v (q) of Eq. (10). In our case,
D(q) is a 4×4 matrix, while the Dij(q) are 2×2 matrices
(i, j = 1, 2). For a given q there are 4 eigenfrequencies
and 4 corresponding, mutually orthogonal eigenvectors,
which give the amplitudes of the wave solutions (10).
In the literature these eigenvectors are called vibrational

modes.
The eigenfrequencies can be found by solving the fol-

lowing equation for λ(q) = ω2 (q):

det [D(q) − λ(q) I] = 0, (14)

where I is the 4× 4 unit matrix. The 4× 4 determinant
can be evaluated directly; this is, however, rather tedious.
Below we present another approach, which allows us to
find analytical solutions for the eigenfrequencies. Note
that the dynamical matrix is hermitian (see Eq. (13e)),
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therefore its eigenvalues are real. The basic idea is that
D(q) is a block matrix, whose elements are the 2 × 2
matrices Dij(q), and D11(q) and D22(q) are diagonal.
This way, the original eigenvalue problem is reduced to
finding the eigenvalues of a 2 × 2 matrix. This problem
can be solved analytically.

IV. ANALYTIC SOLUTION OF THE

EIGENVALUE PROBLEM

In this section an analytic method is presented to de-
termine the eigenfrequencies and the vibrational modes
of the honeycomb structure. Since D11(q) and D22(q)
are diagonal matrices, one can eliminate u(q) from
Eq. (12), and find by using Eqs. (13b)-(13c)

PP∗v(q) = λ(q)v(q), where (15a)

P =
3

∑

j=1

nj ⊗ nj e
iqdj , (15b)

λ(q) =
m1m2

D2

(

λ(q) − 3D

2m1

)(

λ(q)− 3D

2m2

)

.(15c)

Eq. (15a) is another eigenvalue equation. The matrix
PP∗ can be rewritten as

PP∗ =
3

∑

j,k=1

[(nj ⊗ nj) (nk ⊗ nk)] e
iq(dj−dk)

=

3
∑

j,k=1

[(nj ⊗ nk) (njnk)] e
iq(dj−dk)

=

3
∑

j=1

nj ⊗ nj −
1

2

3
∑

j,k=1
j 6=k

nj ⊗ nke
iq(dj−dk)

=
3

2

3
∑

j=1

nj ⊗ nj −
1

2

3
∑

j,k=1

nj ⊗ nke
iq(dj−dk)

=
9

4
E− 1

2
f ⊗ f , (16)

where

f =

3
∑

j=1

nje
iqdj . (17)

In the derivation, identities (4b), (8b) and (8c) have been
used. Note that f is a complex vector.
From (4a) it is easy to see that v1 = f is an eigenvector

of the matrix PP∗:

PP∗v1 = PP∗f =
9

4
f − 1

2
f2 f =

(

9

4
− 1

2
f2
)

v1, (18)

with eigenvalue λ1 = 9/4 − 1/2 f2. Using (8c), the dot
product f2 can easily be evaluated:

f2 =
3

∑

j,k=1

(njnk)e
−iqdj+iqdk = 3− 1

2

3
∑

j,k=1
j 6=k

eiq(dk−dj)

= 3− η(q), (19)

where

η(q) = cosqa1 + cosqa2 + cosq(a1 − a2), (20)

has been expressed in terms of the primitive translation
vectors a1 and a2. Thus, the eigenvalue λ1 corresponding
to the eigenvector v1 is

λ1 =
3 + 2η(q)

4
. (21)

The other eigenvector must be perpendicular to v1.
It is useful to introduce three unit vectors, l1, l2, l3 (see
Fig. 3), such that

ljnj = 0, (22a)

ljnk = −lknj , (22b)

| ljnk | =

√
3

2
, if j 6= k. (22c)

Next, the vector

n1

n2

2l l 3

1l n3

FIG. 3: The three vectors l1, l2, l3 are obtained by a 90◦-
rotation from n1,n2,n3.

g =

3
∑

j=1

lje
−iqdj . (23)

is defined. Note the presence of the vectors dj in the
exponent. Then, from (22) it is obvious that g is per-
pendicular to the vector f :

f g =
3

∑

j,k=1

njlke
−iqdj−iqdk = 0. (24)

Therefore, the other eigenvector of PP∗ can be chosen
as v2 = g, and the corresponding eigenvalue λ2 can be
found from PP∗v2 = PP∗g = 9

4 g − 1
2 f (f g) = 9

4 v2.
Thus, the second eigenvalue is

λ2 =
9

4
. (25)

Note that this eigenvalue is independent of q. Finally,
using (15c) one can obtain the four eigenfrequencies of
the dynamical matrix D(q):
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ω1,2(q) =
√

λ1,2(q) =

√

√

√

√

√

3

4
D





1

m1
+

1

m2
±

√

(

1

m1
− 1

m2

)2

+
12 + 8 η(q)

9m1m2



, (26a)

ω3(q) =
√

λ3(q) = 0 and ω4(q) =
√

λ4(q) =

√

3

2
D

(

1

m1
+

1

m2

)

, (26b)

where λ1 and λ2 (± signs, respectively) correspond to λ1,
while λ3 and λ4 to λ2. η(q) is defined in (20).
To find u(q) one can use Eqs. (12) and (13b)-(13c),

and obtain

u(q) = − D/
√
m1m2

λ(q) − 3D/ (2m1)
eiqd1P∗v(q). (27)

First, P∗v1 and P∗v2 are calculated. Using (4a), (8a)
and (8c)

P∗v1 = P∗f =

3
∑

j=1

nj ⊗ nje
−iqdj

3
∑

k=1

nke
iqdk

=
3

∑

j=1

nj −
1

2

3
∑

j,k=1
j 6=k

nje
iq(dk−dj)

= −1

2

3
∑

k=1

eiqdk

3
∑

j=1

nje
−iqdj = c f∗, (28)

where c = − 1
2

∑3
k=1 eiqdk is a scalar value depending on

q. Similarly,

P∗v2 = P∗g =
3

∑

j=1

nj ⊗ nje
−iqdj

3
∑

k=1

lke
−iqdk

=−3

2

(

l1e
iqd1 + l2e

iqd2 + l3e
iqd3

)

=−3

2
g∗,(29)

where we have made use of the identities n2−n1 =
√
3 l3,

n3 − n2 =
√
3 l1, n1 − n3 =

√
3 l2 and d1 + d2 + d3 = 0.

Finally, using Eqs. (27)-(29) the four eigenvectors are

ω1 →
[

−cC1 (q) f
∗

f

]

, ω2 →
[

−cC2 (q) f
∗

f

]

, (30a)

ω3 →
[

−
√

m1

m2

g∗eiqd1

g

]

, ω4 →
[
√

m2

m1

g∗eiqd1

g

]

, (30b)

where Ci (q) =
D/

√
m1m2

λi − 3D/ (2m1)
eiqd1 , (30c)

and f , g, λi, and c are functions of q defined in Eqs. (17),
(23), (26) and after Eq. (28), respectively. It can be

shown that the four eigenvectors are mutually orthogo-
nal.

It is also worth mentioning that the eigenmode cor-
responding to ω3(q) = 0 is a special one, for example,
[u(R)− v(R)]n1 = 0 for this mode. This can easily
be proved by using (10) and the expression for the ω3

eigenmode given by (30b). This means that neglecting
the second order terms in the displacements u(R) and
v(R) all springs are unstrained, ie. their lengths remain
a. The atoms of the whole lattice move as if the spring
system were a universal joint. This movement of the
atoms does not require any energy (the eigenfrequency
is zero), therefore there is no resistance to a shear of
the lattice. Consequently, the stability of the lattice is
lost, and the whole honeycomb structure becomes unsta-
ble. In nature, besides the central interaction between
nearest neighbors there exist nth neighbor (n = 2, 3, · · · )
and lateral interactions as well4,9. In the latter case, the
interatomic interaction energy depends on the angle be-
tween two adjacent bonds. Such interactions give rise to
the so-called bond-bending forces. These additional in-
teractions stabilize the lattice and one must take them
into account to calculate the vibrational modes more ac-
curately. Nanotubes provide a good example for this9.

V. NUMERICAL RESULTS

In this section a few numerical results for the eigen-
frequencies are presented. As it is seen from (26) only
ω1(q) and ω2(q) have nontrivial q-dependence. In Figs. 4
and 5 the contour plot of ω1(q) and ω2(q) are shown for
m1/m2 = 2. The vector q = (qx, qy) is taken in a Carte-
sian coordinate system in which the x-axis is parallel to
the direction of the vector−d1. In these contour plots the
lines show the constant eigenfrequencies in the parameter
space q = (qx, qy). It is seen from the figures that ω1(q)
has a deep minimum (zero) at q = 0, while ω2(q) has

a maximum there, equal to ω4 =
√

3D(1/m1 + 1/m2)/2
for arbitrary mass ratio m1/m2. The contour plot is also
a useful representation of the vibrational modes to show
the symmetries of the eigenfrequencies in the q space.
One can see from Figs. 4 and 5 that both ω1(q) and
ω2(q) have, eg. a 60◦ rotation around the axis which
goes through the point q = 0 and perpendicular to the
(qx, qy) plane.
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y

x

FIG. 4: The contour plot of ω1(q) (in units of
√

D/m1) versus
q (in units of 1/a) for m1/m2 = 2. qx is parallel to the vector
−d1.

In Fig. 6 the eigenfrequencies ω1(q), ω2(q) and ω4(q)
are plotted along the lines in the first Brillouin zone join-
ing the points Γ, M and K shown in the inset of the
figure. In solid-state physics it is a common practice to
plot the eigenfrequencies along the lines between high
symmetric points. Owing to the symmetry properties of
the eigenfrequency in the q space it is enough to calcu-
late the eigenfrequencies only inside the area enlosed by
these lines. In the same Cartesian coordinate system as
in Fig. 4 the points Γ, M and K are qΓ = 0, qM = (2π3a , 0)

and qK = (2π3a ,
2π

3
√
3a
), respectively. Here a is the length

of hexagons’ side. Note that ω4(q) is independent of q.

In the literature the vibrational mode corresponding to
ω1(q) is called the acoustical branch because the eigen-
frequency at small |q| has the same form as that of the
sound waves, namely ω = v|q|, where v is the sound ve-
locity. Those vibrational modes for which the frequencies
does not tend to zero as |q| → 0 form the optical branch.
In our example ω2(q) and ω4(q) belong to the optical
branch. It is clear from Fig. 6 that at the point K there
is a frequency gap between the acoustical and optical

branch. This gap is equal to
√

3D
2

∣

∣1/
√
m1 − 1/

√
m2

∣

∣.

We now take m1 = m2 corresponding to a single
graphite layer. A similar plot as in Fig. 6 is shown in

y
x

FIG. 5: The same contour plot as in Fig. 4 for ω2(q).

0

1

2

ω

ω1
ω2
ω4

M K ΓΓ

M
K

Γ

FIG. 6: The eigenfrequencies (in units of
√

D/m1) ω1(q)
(solid), ω2(q) (dashed), ω4(q) (dot-dashed) along lines be-
tween points Γ, M and K. These points are in the first Bril-
louin zone shown in the inset. The mass ratio is m1/m2 = 2.

Fig. 7 for this case. One can see that the gap disappears.
These results are similar to those obtained from the re-
cent accurate calculations for two modes of the isolated
graphite layer12.
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0

0.5

1

1.5
ω

ω1
ω2
ω4

Γ K ΓM

K
M

Γ

FIG. 7: The same plot as in Fig. 6 for m1/m2 = 1.

VI. OTHER LATTICE STRUCTURES

To demonstrate the effectivity of the general method
developed in Sections II and III, we now present further
examples of lattice structures.
In Fig. 8 an equilateral triangular lattice is shown. We

assume only nearest neighbor interactions repersented
by springs of force constant D. One can easily write

3

2

1

n

n

n

FIG. 8: Equilateral triangular lattice with nearest neighbor
interactions. The straight solid lines correspond to unstrained
springs of force constant D connecting nearest neighbor atoms
in equilibrium state. The unit vectors n1,n2 and n3 corre-
spond to the directions of the unstrained springs of length a.

down the equations of motion for the displacements of
the atoms using Eq. (5) and it yields the 2×2 dynamical
matrix:

D(q) =
2D

m

3
∑

i=1

[1− cos (qni a)] ni ⊗ ni, (31)

where the unit vectors ni (i = 1, 2, 3) are shown in Fig. 8.
The eigenfrequencies are again the square-root of the

eigenvalues of the dynamical matrix as in (14). From a
simple calculation one finds

ω1,2(q) =

√

√

√

√D11 +D22 ±
√

(D11 −D22)
2
+ 4D2

12

2
,

(32)
where Dij is the ij matrix element of the 2×2 dynamical
matrix D(q) for a given wave vector q. In Fig. 9 the
eigenfrequencies ω1(q) and ω2(q) are plotted along the

lines in the first Brillouin zone joining the points Γ, K
and M shown in the figure. In the Cartesian coordinate
system in which qx is parallel to the unit vector n1, the
points Γ, X and M are qΓ = 0, qK = (4π3a , 0) and qM =
(π
a
, π√

3a
), respectively.

0

1

2

ω

ω1

ω2

ΓK MΓ

K
M

Γ

FIG. 9: For triangular lattice the eigenfrequencies (in units of
√

D/m) ω1(q) (solid) and ω2(q) (dashed) along lines between
points Γ, K and M. These points are in the first Brillouin zone
shown in the inset.

In Fig. 10 a square lattice is shown. We now assume
first and second nearest neighbor interactions (solid and
dashed lines in the figure) represented by springs of force
constant D1 and D2, respectively. Similar way as before,

n2

l1

n1

l2

2

D1

D

FIG. 10: Square lattice with first and second nearest interac-
tions. The straight lines correspond to unstrained springs of
force constant D1 (solid lines) and D2 (dashed lines) connect-
ing first and second nearest neighbor atoms in equilibrium
state. The distance between nearest neighbors is a. The unit
vectors n1,n2, l1 and l2 correspond to the directions of the
unstrained springs.

one finds that the 2× 2 dynamical matrix is

D(q) =
2D1

m

2
∑

i=1

[1− cos (qni a)] ni ⊗ ni

+
2D2

m

2
∑

i=1

[

1− cos
(

q li
√
2 a

)]

li ⊗ li, (33)

where the unit vectors ni and li (i = 1, 2) are shown in
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Fig. 10. Finally, the two eigenfrequencies can be obtained
again from Eq. (32). In Fig. 11 the eigenfrequencies ω1(q)
and ω2(q) are plotted along the lines in the first Brillouin
zone joining the points Γ, X and M shown in the figure.
In the Cartesian coordinate system in which qx is parallel
to the unit vector n1, the points Γ, X and M are qΓ = 0,
qX = (π

a
, 0) and qM = (π

a
, π
a
), respectively.

0

1

2

ω

ω1

ω2

Γ X M Γ

XΓ

M

FIG. 11: For square lattice the eigenfrequencies (in units of
√

D1/m) ω1(q) (solid) and ω2(q) (dashed) along lines be-
tween points Γ, X and M. These points are in the first Bril-
louin zone shown on the right of the figure. The ratio of the
force constants is D1/D2 = 2.

VII. CONCLUSIONS

We first calculated the vibrational modes of the hon-
eycomb lattice in the harmonic approximation. It was
assumed that nearest neighbor atoms are connected by
ideal springs. Using the direct product of vectors we de-
rived a formula for the spring force acting on an atom.
The equations of motion for the atoms were then derived
and the resulting dynamical matrix was given explicitly.
The vibrational frequencies and modes were determined
from the eigenvalue problem of the dynamical matrix by
analytic methods. Our work may provide a starting point
to the studies of the more complicated lattice dynamics
of nanotubes. Our general approach is also applied to
study the lattice dynamics of the equilateral triangular
and the square lattices. In the latter case, to investigate

more complicated structures, not only the first but the
second nearest neighbor interactions are also included.
Finally, we mention some problems.

• What is the first Brillouin zone for the square,
triangular and honeycomb lattice structures dis-
cussed before? Study the symmetry properties of
the eigenfrequencies ω1(q) and ω2(q) in the first
Brillouin zone.

• Study the long wavelength limit, that is when
|q|a ≪ 1 for the square, triangular and honeycomb
lattice structures. What are the eigenmodes in this
case? Determine the sound velocity.

• In Fig. 12 a and b two ladder-type lattices are
shown. Using the method developed in Sections II
and III find the vibrational frequencies and modes
for these lattices. Determine how the results de-
pend on α in Fig. 12 b.

������ ���� ����
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��
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��
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���
���
���

α

b)

a)

D 2

D 1

D 3

D 1

D 2

FIG. 12: Square (a) and triangular (b) ladder lattices. Dif-
ferent types of lines represent different spring constants. In
the triangular ladder all springs of force constant D2 have the
same unstrained length.
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7 L. Mihály and M. C. Martin, Solid State Physics; Problems
and Solutions, John Wiley & Sons, Inc., New York, 1996).

8 P. M. Chaikin and T. C. Lubensky, Principles of Con-
densed Matter Physics (Cambridge University Press, Cam-

mailto:cserti@galahad.elte.hu


9

bridge, England, 1995).
9 R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical
Properties of Carbon Nanotubes (Imperial College Press,
London, 1998).

10 W. H. Press, B. P. Flannery, S. A. Teukolsky and
W. T. Vetterling, Numerical Recipes (Cambridge Univer-
sity Press, Cambridge, England, 1990), p. 67 and 309.

11 G. B. Arfken and H. J. Weber, Mathematical Methods for

Physicists (Academic Press, San Diego, CA, 1995), 4th ed.,
p. 132.

12 O. Dubay and G. Kresse, “Accurate density functional cal-
culations for the phonon dispersion relations of graphite
layer and carbon nanotubes,” Phys. Rev. B 67, 035401-13
(2003).


