123 research outputs found

    Solid-state structural properties of alloxazine determined from powder XRD data in conjunction with DFT-D calculations and solid-state NMR spectroscopy : unraveling the tautomeric identity and pathways for tautomeric interconversion

    Get PDF
    We report the solid-state structural properties of alloxazine, a tricyclic ring system found in many biologically important molecules, with structure determination carried out directly from powder X-ray diffraction (XRD) data. As the crystal structures containing the alloxazine and isoalloxazine tautomers both give a high-quality fit to the powder XRD data in Rietveld refinement, other techniques are required to establish the tautomeric form in the solid state. In particular, high-resolution solid-state 15N NMR data support the presence of the alloxazine tautomer, based on comparison between isotropic chemical shifts in the experimental 15N NMR spectrum and the corresponding values calculated for the crystal structures containing the alloxazine and isoalloxazine tautomers. Furthermore, periodic DFT-D calculations at the PBE0-MBD level indicate that the crystal structure containing the alloxazine tautomer has significantly lower energy. We also report computational investigations of the interconversion between the tautomeric forms in the crystal structure via proton transfer along two intermolecular N–H···N hydrogen bonds; DFT-D calculations at the PBE0-MBD level indicate that the tautomeric interconversion is associated with a lower energy transition state for a mechanism involving concerted (rather than sequential) proton transfer along the two hydrogen bonds. However, based on the relative energies of the crystal structures containing the alloxazine and isoalloxazine tautomers, it is estimated that under conditions of thermal equilibrium at ambient temperature, more than 99.9% of the molecules in the crystal structure will exist as the alloxazine tautomer

    Ectopic callose deposition into woody biomass modulates the nano-architecture of macrofibrils

    Get PDF
    Plant biomass plays an increasingly important role in the circular bioeconomy, replacing non-renewable fossil resources. Genetic engineering of this lignocellulosic biomass could benefit biorefinery transformation chains by lowering economic and technological barriers to industrial processing. However, previous efforts have mostly targeted the major constituents of woody biomass: cellulose, hemicellulose and lignin. Here we report the engineering of wood structure through the introduction of callose, a polysaccharide novel to most secondary cell walls. Our multiscale analysis of genetically engineered poplar trees shows that callose deposition modulates cell wall porosity, water and lignin contents and increases the lignin-cellulose distance, ultimately resulting in substantially decreased biomass recalcitrance. We provide a model of the wood cell wall nano-architecture engineered to accommodate the hydrated callose inclusions. Ectopic polymer introduction into biomass manifests in new physico-chemical properties and offers new avenues when considering lignocellulose engineering.Bourdon et al. demonstrate the possibility to ectopically synthesize callose, a polymer restricted to primary cell walls, into Arabidopsis and aspen secondary cell walls to manipulate their ultrastructure and ultimately reduce their recalcitrance

    A semi-automated security advisory system to resist cyber-attack in social networks

    Get PDF
    Social networking sites often witness various types of social engineering (SE) attacks. Yet, limited research has addressed the most severe types of social engineering in social networks (SNs). The present study investigates the extent to which people respond differently to different types of attack in a social network context and how we can segment users based on their vulnerability. In turn, this leads to the prospect of a personalised security advisory system. 316 participants have completed an online-questionnaire that includes a scenario-based experiment. The study result reveals that people respond to cyber-attacks differently based on their demographics. Furthermore, people’s competence, social network experience, and their limited connections with strangers in social networks can decrease their likelihood of falling victim to some types of attacks more than others

    Identifying the components of the solid–electrolyte interphase in Li-ion batteries

    Get PDF
    The importance of the solid–electrolyte interphase (SEI) for reversible operation of Li-ion batteries has been well established, but the understanding of its chemistry remains incomplete. The current consensus on the identity of the major organic SEI component is that it consists of lithium ethylene di-carbonate (LEDC), which is thought to have high Li-ion conductivity, but low electronic conductivity (to protect the Li/C electrode). Here, we report on the synthesis and structural and spectroscopic characterizations of authentic LEDC and lithium ethylene mono-carbonate (LEMC). Direct comparisons of the SEI grown on graphite anodes suggest that LEMC, instead of LEDC, is likely to be the major SEI component. Single-crystal X-ray diffraction studies on LEMC and lithium methyl carbonate (LMC) reveal unusual layered structures and Li+ coordination environments. LEMC has Li+ conductivities of >1 × 10−6 S cm−1, while LEDC is almost an ionic insulator. The complex interconversions and equilibria of LMC, LEMC and LEDC in dimethyl sulfoxide solutions are also investigated
    corecore