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Abstract. Social networking sites often witness various types of social engi-

neering (SE) attacks. Yet, limited research has addressed the most severe 

types of social engineering in social networks (SNs). The present study in-

vestigates the extent to which people respond differently to different types 

of attack in a social network context and how we can segment users based 

on their vulnerability. In turn, this leads to the prospect of a personalised 

security advisory system. 316 participants have completed an online-ques-

tionnaire that includes a scenario-based experiment. The study result re-

veals that people respond to cyber-attacks differently based on their de-

mographics. Furthermore, people’s competence, social network experience, 

and their limited connections with strangers in social networks can decrease 

their likelihood of falling victim to some types of attacks more than others. 
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1! Introduction 

Individuals and organisations are becoming increasingly dependent on working with 

computers, accessing the World Wide Web and, more importantly, sharing data through 

virtual communication. This makes cyber-security one of today’s greatest issues. Pro-

tecting people and organisations from being targeted by cybercriminals is becoming a 

priority for industry and academia [1]. This is due to the huge potential damage that 

could be associated with losing valuable data and documents in such attacks. 

Previous research focuses on identifying factors that influence people’s vulnerability 

to cyber-attack [2] as the human has been characterised as the weakest link in infor-

mation security research. When investigating human behaviour toward online threats, 

it is important to focus on the interaction between the individual’s attributes, their cur-

rent context, and the message persuasion tactic [3].  Most previous studies that have 

considered persuasion tactics in social engineering exploits, have focused on phishing 

as the common type of cyber-attack while limited research has investigated other types, 

such as malware, or clickjacking. Figure 1 shows that 37% of participants in the current 

study fell victim to a phishing scam attack that asked them to validate their Facebook 

account using a phishing link, while only 28% fell victim to a phishing attack that asked 

them to register their information to enter a prize draw. Consequently, the present study 



 

argues that people’s vulnerabilities change depending upon the type of cyber-attack and 

our investigation addresses the human characteristics associated with victimisation for 

a range of cyber-attacks which, in turn, facilitates the design of a semi-automated secu-

rity advisory system that relies on the idea of people segmentation and targeting. Seg-

mentation, Targeting, and Positioning (STP) strategic approach is a well-known model 

that has been extensively applied to modern marketing research [4]. According to this 

model, there are three main processes to segment people in order to deliver them an 

effective and ‘focused-to-need’ messages. We have adopted this approach to design a 

security advisory system based on social networks users’ characteristic and associated 

threat vulnerability. 

 

Fig. 1. Victim percentages 

The material presented here is organised as follows. Section 2 provides a brief liter-

ature review. Section 3 describes the study methodology while Section 4 presents the 

results of the analysis. Discussion of the results is provided in Section 5. An outline 

approach to a semi-automated user advisory system is proposed in Section 6. Finally, 

Section 7 offers conclusions from the study.  

2! Literature review 

Criminals in social communication channels use advanced methods to access sensi-

tive information to help them increase the success rate of their attacks and this so-called 

social engineering attacks. In this type of attack, the aim is often not to target systems, 

but rather individual’s users or organizations. In order to protect against this type of 

cyber-attack, it is necessary to investigate and understand the reasons why people are 

not able to detect these attempts to penetrate their data and devices.  

It is important to investigate the main entities that encapsulate and contribute to the 

success of social engineering-based attacks in order to understand why people get easily 

deceived by this kind of attack. Krombholz et al. [5] proposed a taxonomy of social 

engineering sophisticated attacks in the virtual communication networks. The taxon-

omy comprised three main entities that have been argued to form every social engineer-

ing attack, the operator of the attack, the type of the attack, and the attack channel. The 

attack can be originated by either a person which reflected a limited number of victims 



 

such as spear phishing [6] or by a malicious software which usually targeted a consid-

erable huge number of users such as the cross-site scripting attack in SN [7]. 

In the virtual environment of social networks, there has been limited research avail-

able to help explain why people are easily deceived by social engineering attacks. An 

investigation of people’s social network habits and their relation to people’s vulnera-

bility to SN phishing attacks revealed that the willingness of raising the number of con-

nected friends as well as maintaining frequent use of the network have a high impact 

on user behaviour [8]. Yet, another study [9] went further by investigating whether the 

impact of social network usage on people’s likely victimisation differs among different 

social network platforms and found a statistically negative relationship between fre-

quent usage of multipurpose dominant SN such as Facebook and victimization. This 

means that high frequency of using Facebook does not lead to an increase in the likeli-

hood of victimisation. Furthermore, another study [10] found that connecting with a 

large number of profiles on Facebook would lead to a non-controllable online network 

which ultimately increases individuals’ vulnerability. Perceptual-related factors have 

also been identified as affecting vulnerability to cyber-attacks, as a high-level of risk 

propensity could cause people to fall victim to cyber-attacks [9]. 

One of the proposed solutions to deal with enduring online threats is to understand 

the victim's background and examine their reaction by conducting a real attack, such as 

the case of sending phishing emails to a particular group of users [11], [12]. In contrast, 

due to ethical considerations, the majority of studies [13]–[15] used scenario-based ex-

periments to examine people’s vulnerabilities. Among many identified characteristics 

that are believed to predict potential victims [2], [16], demographics are the most con-

troversial variables. Moreover, most of the earlier mentioned studies are focused on one 

type of attack although criminals have several ways to perform social engineering at-

tacks. This has indicated the need for further investigation of people’s vulnerability to 

different types of cyber-attack and the need to explore which groups of users are more 

vulnerable to specific types of cyber-attack in a social network context. Identifying the 

characteristics of most vulnerable individuals for a particular type of attack could help 

designing an advisory system to push awareness messages to vulnerable individuals. 

We expect that designing such security advisory system based upon observed user be-

haviour and characteristics could reduce people susceptibility to different types of 

cyber-attacks in social networks. 

3! Methodology 

In order to design our advisory system, we first collect the user data. An online ques-

tionnaire has been designed as an assessment tool to examine participants’ perception 

and behaviour toward different threats in a social network context.  

An invitation email was sent to faculty staff in two universities asking them to dis-

tribute the online-questionnaire among their students and staff. Participants were pre-

sented with the online-questionnaire which has 3 parts. The first part asked about de-

mographics. The second part includes questions that measure study constructs such as 

the three scales used to measure the user’s competence to deal with cyber-attacks [17]. 



 

 The final part includes the scenario-based experiment as participants were presented 

with four images of Facebook posts, each post includes a type of cyber-attack such as 

phishing for sensitive information (Attack 1), clickjacking with an executable file (At-

tack 2), malware attack (Attack 3), and a phishing scam that impersonates a legitimate 

organization (Attack 4). These four cyber-attacks have been chosen from the most 

prominent cyber-attacks that occur in social networks [18]. Participants were asked to 

indicate their response to these attacks, as if they encountered them in their real ac-

counts, by rating a number of statements such as “I would click on this button to read 

the file” using a 5-point Likert-scale from 1 “Strongly Disagree” to 5 “Strongly Agree”. 

After that, we examine whether the collected user data could help us designing a 

semi-automated advisory system that classifies participants into different vulnerability 

segments in order to target their needs by providing personalised awareness messages. 

4! RESULTS 

We have tested which group of people are vulnerable to each type of cyber-attack in 

the scenario-based experiment, based upon their rating response to the different state-

ments. Table 1 describes the mean from the five-point Likert-scale and its correspond-

ing vulnerability level. 

Table 1. Description of the scale mean 

Mean Likert scale Vulnerability Level 

1.00-1.79 Strongly Disagree Low vulnerable 
1.80-2.59 Disagree 

2.60-3.39 Neither Agree nor Disagree Moderately vulnerable 

3.40-4.19 Agree High Vulnerable 

4.20-5.00 Strongly Agree 

Demographic differences 

To examine whether user demographics have an impact on user susceptibility to so-

cial engineering victimization, every demographic variable has been tested individually 

to identify which group of people are more vulnerable to a certain type of attack.  Fe-

male participants are found to be more vulnerable than male participants to all consid-

ered cyber-attacks.  Figure 2 shows that among the four selected types of attack, the 

phishing scam that impersonates a Facebook technical support message is most suc-

cessful among male and female participants with a mean of 1.92, 2.32 respectively. 

Generally, younger adults are less vulnerable to cyber-attacks than older adults (as 

appears in Figure 3). Surprisingly, in the phishing that offers a prize as well as in the 

malware attack, the oldest group (45-55) was most vulnerable (phishing=2.60, mal-

ware=2.80) while the mid-aged group (35-44) was the least likely to respond to these 

kinds of attack (phishing=1.71, malware=1.64). 



 

 
Fig. 2. Gender Comparisons of Vulnerability to SE 

 

 
Fig.  3. Age Comparisons of Vulnerability to SE 

The analysis of different groups with various education levels and their response to 

the four types of SE attacks revealed that master’s degree holders are more vulnerable 

to clickjacking than to other types of cyber-attack (m=2.14). While high school and 

bachelor’s degree holders are more vulnerable to the phishing scam that impersonates 

a legitimate SN provider (with a mean of 2.10, and 2.31 respectively).  

Users with a technical education background were shown to be less vulnerable to 

cyber-attacks. In contrast, Business School students are more vulnerable to the phishing 

attack that offers a prize than other attacks, while Humanities and Arts students are 

more vulnerable to the malware attack. Medical and Science students are more vulner-

able to the phishing scam that impersonates a Facebook technical support message. 

Prevention factors 

In order to investigate if user characteristics can prevent user’s vulnerability to spe-

cific types of attacks, three factors have been chosen (user’s competence, Social net-

work experience, low connections with strangers) to consider whether their prevention 

effect is similar across the four types of attacks. Multiple regression tests have been 

conducted to test the impact of these three variables on preventing users from falling 

victim to cyber-attacks. These factors are proved to decrease people’s vulnerability to 

the four considered cyber-attacks, when combined together in our study. This section 

will present the result of their impact on the four types of attacks as shown in Figure 4. 



 

 
Fig. 4. Regression Analysis Results 

User’s competence: When analysing the impact of users’ competence on decreasing 

users’ susceptibility to social engineering victimization, the result in Figure 4 shows 

that measuring users’ competence could identify less vulnerable individuals who can 

correctly detect phishing attack that offers a prize (t value=-2.447, P<0.05) and also 

detectors of malware attack (t value=-2.098, P<0.05). While competence could not pre-

vent participants from falling victim to clickjacking and phishing scam attacks, as these 

relationships appear to be not significant (t value>-1.96). 

Social Network experience: Regression analysis of the impact of social network ex-

perience on decreasing individuals’ response to different kinds of cyber-attack indi-

cated that among the four types of cyber-attacks, phishing attack that offers a prize (t 

value=-3.816, P<0.05) and clickjacking (t value=-2.573, P<0.05) are attacks that expe-

rienced social network users seem to have the ability to deal with and detect. It is also 

worth noting that there is a negative impact of social network experience on the other 

two cyber-attacks, however, this effect is still considered weak and not significant.  

Low connections with strangers in SN: People with limited connections to strangers 

are less vulnerable to malware attack (t value=-2.049, P<0.05) as well as to the phishing 

scam that impersonates a legitimate organization (t value=-2.759, P<0.05). The result 

also shows that such low connections decrease users’ vulnerability to phishing and 

clickjacking, although these relationships are not strong enough to be significant. 

5! DISCUSSION 

Some studies found no major variance between male and female in regards to re-

sponse to email phishing [19]. Other studies have found women to be less susceptible 

to email phishing than men [20], [21]. Yet, female users have been repeatedly indicated 

as the weakest gender in detecting the risk in different cyber-attacks contexts such as 

email [14] or Social Network [15]. Our study also found that women are more vulner-

able than men in all four types of attack. Furthermore, younger adults have been seen 

as a reckless group when dealing with risky emails, as stated by previous studies [14]. 

Yet, our study context is different and younger adults have shown their competency in 
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detecting social engineering attacks in social networks. This might be because their 

awareness and experience with social network settings and environment surpasses their 

knowledge of email environments and associated risks. 

Benson et al. [22] state that students are less likely to fall for cybercrimes in social 

networks when compared with non-students. However, their study did not distinguish 

between the education levels of participants. Our study found that master’s degree hold-

ers are more vulnerable to clickjacking attacks. This might be due to the fact that edu-

cated people usually seek new information even if there is risk associated with it. Fur-

ther, a recent study [23] found that business students are more likely to open email 

phishing than humanities students. That study argues that this might be because busi-

ness students are accustomed to a competitive environment and try to show their com-

mitment by quick response to university emails. 

The current study indicated three factors that can protect people from being deceived 

on social network websites. The individual competence level to deal with cyber-crime 

can be measured based upon three dimensions as proposed by [17], i.e., security aware-

ness, privacy awareness, and self-efficacy. The result shows that this measure can sig-

nificantly predict the individual’s ability to detect phishing and malware attacks while 

decreasing the individual’s vulnerability to clickjacking and scam attacks. Perception 

of self-ability to control the content shared on social network websites is considered a 

predictor of detection ability of social network threats [9]. 

A recent study investigating social engineering attacks in Facebook [15] found that 

the time elapsed since joining Facebook can be a significant predictor of susceptibility 

to victimisation. The more time has elapsed, the less vulnerable is the person. This ac-

cords with our findings as the years the individual spent using the network has been 

used as a measure of social network experience which also appeared to increase the 

individual awareness of the risk associated with using the network. Experienced users 

are more familiar with phishing and clickjacking, and thereby, easily detect them. De-

spite the fact that the relationship between SN experience and vulnerability to the other 

two attacks (malware, scam) are not considered statistically significant, experience with 

the network has decreased the likelihood of victimisation.  

Previous studies claim that having a large network size is positively associated with 

online vulnerability [8], [10] as larger network’s size included strangers as well as 

friends. Our study found that low connections with strangers can protect people from 

being deceived in social network specifically when encountering malware and phishing 

scam attacks. Limited connection with strangers is also decreasing the individual vul-

nerability to phishing and clickjacking attacks.  

Our user study results provided an insight on the possibility to segment SN users 

based on their characteristics and vulnerabilities as a basis for a semi-automated secu-

rity advisory system that responds to individual user vulnerabilities. 

6! The architecture of a security advisory system 

Our research on determining user vulnerabilities affords a basis for profiling users 

according to their weakness in respect of particular threats. In turn, this provides a 



 

means to design a personalised advisory system that sends awareness posts to target 

individual user needs. For example, if the characteristics of the user are similar to those 

who are vulnerable to clickjacking, the advisory system might send awareness posts to 

the user and advise him/her on how to deal with this type of threat. The architecture of 

our proposed semi-automated advisory system is shown in Figure 5. A brief description 

of each component is given below. 

Social networks users. A message must be sent to social networks users who want 

to register and benefit from the advisory system; Completing assessment survey. Any 

new user should start by completing a start-up survey that helps us assess participants’ 

behaviour and perception in online social networks. This assessment survey result will 

profile the user in the most suitable segment later on to receive advice that suits the 

particular user needs. Pre-processing. The collected data will go through different 

screening and analysis tests such as construct reliability and validity tests. User classi-

fication. The segmentation process can be based on two different machine learning 

approaches: supervised or unsupervised [24]. Using unsupervised techniques such as 

clustering might be not suitable in our system as it requires no prior knowledge and 

clusters users based on patterns of unlabelled data. We aim to group users based on 

their vulnerability to different cyber-attacks. Therefore, supervised techniques such as 

classification are more appropriate to our goal, where the classes are predefined and the 

users grouped based on determined criteria. Thus, users will be classified into different 

groups based on the result of the scenario-based experiment in the assessment survey. 

Every segment should include users who shared similar characteristics that were found 

to increase vulnerability to a particular type of threat. For example, based on users’ 

response to the phishing attack in the scenario-based experiment, users may be grouped 

into at least three segments: high, moderate, and low vulnerability. However, as we 

have considered user characteristics in the classification process, we might have more 

than one high vulnerable segment to a particular type of attack. For example, age and 

gender are among the factors that are included in the classification process, so it is 

possible to have two high vulnerable segments, e.g., one segment includes young-adult 

males and the other includes mid-aged females. This variation in the segmentation pro-

cess can help us provide more individualised awareness messages. 

Vulnerability Threshold. The local administrator can determine the threshold and 

the priority for each type of attack. For example, in our study we found that phishing 

scam is the most effective attack. Therefore, the threshold for this type of attack may 

be set to 3 which means high, moderate and low vulnerable segments will receive 

awareness advice on this type of threat. While the severity of malware attack is consid-

ered average in our study, we might set its threshold to 2, meaning that malware-related 

advice will be sent to the high and moderate rated vulnerability segments. Both phishing 

and clickjacking thresholds may be set to 1, meaning that only high vulnerable seg-

ments will receive advice for these two types of attack. Of course, a single user could 

be vulnerable to different types of attack and assigned to more than one segment. There-

fore, the priority of the received type of advice is also determined by the attack’s vul-

nerability threshold as assigned by the local administrator. 

Segment filtering. In this step, segments are filtered based on threat thresholds. For 

each type of attack, only segments in the threshold vulnerability level will be addressed. 



 

For instance, only segments with high vulnerability to phishing and clickjacking attacks 

may be considered. While according to the threshold of phishing scam, high, moderate, 

and low vulnerable segments may be taken into account. 

 
Fig. 5. Architecture of Semi-Automated Advisory System 

Suitable automatic advice. Different user segments are vulnerable to different 

threats and require advice that is tuned to their needs. With this in mind, each of the 

identified threats has a set of recommendations that would help individuals to avoid 

falling victim to a particular threat. Targeting users. Each segment of users will receive 

automatic advice that aims to sensitise them to threats to which they are more vulnera-

ble, while each single user can receive more than one package of advice, based on attack 

priorities that he/she is vulnerable to. 

  CONCLUSION 

We are investigating why people easily fall victim to cyber-attacks in various online 

channels and whether vulnerabilities differ across cyber-attack categories in the context 

of social networks. The present study indicates that people respond differently to dif-

ferent types of cyber-attacks. A phishing attack that pretended to be from an authorized 

and legitimate organization (Facebook) is the most successful attack in our study with 

37% of participants falling victim. 

Female participants were found to be more vulnerable to social engineering victim-

isation than male participants. Younger and mid-aged adults show high detection ability 

compared to other age groups. Education is found to influence people’s capability, as 

users with technical majors were found to be competent to detect cyber-attacks. Fur-

thermore, the study result demonstrates that users’ competence level, their experience 

with social networks, and low connections with strangers in the network play an im-

portant role in preventing people from falling victims to certain types of cyber-attacks.  

The proposed semi-automated advisory system should help to address the problem 

of human vulnerabilities and weakness in detecting social engineering attacks. As-
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sessing social network users and grouping them based on their behaviour and vulnera-

bilities is essential in order to focus relevant advice that meets users’ needs. This is 

considered cost and time effective as users are only presented with insight on relevant 

threats. Furthermore, integrating individuals’ needs as well as administrator’s 

knowledge of existing threats, could avoid the overhead and inconvenience of sending 

blanket advice to all social network users. 
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