4,770 research outputs found

    Optical phonons in new ordered perovskite Sr2Cu(Re0.69Ca0.31) Oy system observed by infrared reflectance spectroscopy

    Full text link
    We report infrared reflectivity spectra for a new correlated cupric oxide system Sr2Cu(Re0.69Ca0.31)Oy with y ~ 0.6 at several temperatures ranging between 8 and 380 K. The reflectivity spectrum at 300 K comprises of several optical phonons. A couple of residual bands located around 315 and 653 cm-1 exhibit exceptionally large intensity as compared to the other ones. The overall reflectivity spectrum lifts up slightly with increasing temperature. The energy and damping factor of transverse-optical phonons are determined by fitting the imaginary dielectric constant by Lorentz oscillator model and discussed as a function of temperature in terms of lattice anharmonicity.Comment: 9 pages, 3 figures, presented at ISS2005, to appear in Physica

    Small coupling limit and multiple solutions to the Dirichlet Problem for Yang Mills connections in 4 dimensions - Part I

    Full text link
    In this paper (Part I) and its sequels (Part II and Part III), we analyze the structure of the space of solutions to the epsilon-Dirichlet problem for the Yang-Mills equations on the 4-dimensional disk, for small values of the coupling constant epsilon. These are in one-to-one correspondence with solutions to the Dirichlet problem for the Yang Mills equations, for small boundary data. We prove the existence of multiple solutions, and, in particular, non minimal ones, and establish a Morse Theory for this non-compact variational problem. In part I, we describe the problem, state the main theorems and do the first part of the proof. This consists in transforming the problem into a finite dimensional problem, by seeking solutions that are approximated by the connected sum of a minimal solution with an instanton, plus a correction term due to the boundary. An auxiliary equation is introduced that allows us to solve the problem orthogonally to the tangent space to the space of approximate solutions. In Part II, the finite dimensional problem is solved via the Ljusternik-Schirelman theory, and the existence proofs are completed. In Part III, we prove that the space of gauge equivalence classes of Sobolev connections with prescribed boundary value is a smooth manifold, as well as some technical lemmas used in Part I. The methods employed still work when the 4-dimensional disk is replaced by a more general compact manifold with boundary, and SU(2) is replaced by any compact Lie group

    Large amplitude oscillations in prominences

    Get PDF
    Since the first reports of oscillations in prominences in the 1930s, there have been major theoretical and observational developments to understand the nature of these oscillatory phenomena, leading to the whole new field of the so-called “prominence seismology”. There are two types of oscillatory phenomena observed in prominences; “small amplitude oscillations” (2–3 km s−1), which are quite common, and “large-amplitude oscillations” (>20 km s−1) for which observations are scarce. Large-amplitude oscillations have been found as “winking filament” in Hα as well as motion in the plane-of-sky in Hα, EUV, micro-wave and He 10830 observations. Historically, it has been suggested that the large-amplitude oscillations in prominences were triggered by disturbances such as fastmode MHD waves (Moreton wave) produced by remote flares. Recent observations show, in addition, that near-by flares or jets can also create such large-amplitude oscillations in prominences. Large-amplitude oscillations, which are observed both in transverse as well as longitudinal direction, have a range of periods varying from tens of minutes to a few hours. Using the observed period of oscillation and simple theoretical models, the obtained magnetic field in prominences has shown quite a good agreement with directly measured one and, therefore, justifies prominence seismology as a powerful diagnostic tool. On rare occasions, when the large-amplitude oscillations have been observed before or during the eruption, the oscillations may be applied to diagnose the stability and the eruption mechanism. Here we review the recent developments and understanding in the observational properties of large-amplitude oscillations and their trigger mechanisms and stability in the context of prominence seismology

    Large amplitude oscillation of an erupting filament as seen in EUV, H-alpha and microwave observations

    Get PDF
    We present multiwavelength observations of a large-amplitude oscillation of a polar-crown filament on 15 October 2002, which has been reported by Isobe and Tripathi (Astron. Astrophys. 449, L17, 2006). The oscillation occurred during the slow rise (≈1 km s−1) of the filament. It completed three cycles before sudden acceleration and eruption. The oscillation and following eruption were clearly seen in observations recorded by the Extreme-Ultraviolet Imaging Telescope (EIT) onboard the Solar and Heliospheric Observatory (SOHO). The oscillation was seen only in a part of the filament, and it appears to be a standing oscillation rather than a propagating wave. The amplitudes of velocity and spatial displacement of the oscillation in the plane of the sky were about 5 km s−1 and 15 000 km, respectively. The period of oscillation was about two hours and did not change significantly during the oscillation. The oscillation was also observed in Hα by the Flare Monitoring Telescope at the Hida Observatory. We determine the three-dimensional motion of the oscillation from the Hα wing images. The maximum line-of-sight velocity was estimated to be a few tens of kilometers per second, although the uncertainty is large owing to the lack of line-profile information. Furthermore, we also identified the spatial displacement of the oscillation in 17-GHz microwave images from Nobeyama Radio Heliograph (NoRH). The filament oscillation seems to be triggered by magnetic reconnection between a filament barb and nearby emerging magnetic flux as was evident from the MDI magnetogram observations. No flare was observed to be associated with the onset of the oscillation. We also discuss possible implications of the oscillation as a diagnostic tool for the eruption mechanisms. We suggest that in the early phase of eruption a part of the filament lost its equilibrium first, while the remaining part was still in an equilibrium and oscillated

    Evidence of non-thermal X-ray emission from radio lobes of Cygnus A

    Full text link
    Using deep Chandra ACIS observation data for Cygnus A, we report evidence of non-thermal X-ray emission from radio lobes surrounded by a rich intra-cluster medium (ICM). The diffuse X-ray emission, which are associated with the eastern and western radio lobes, were observed in a 0.7--7 keV Chandra$ ACIS image. The lobe spectra are reproduced with not only a single-temperature Mekal model, such as that of the surrounding ICM component, but also an additional power-law (PL) model. The X-ray flux densities of PL components for the eastern and western lobes at 1 keV are derived as 77.7^{+28.9}_{-31.9} nJy and 52.4^{+42.9}_{-42.4} nJy, respectively, and the photon indices are 1.69^{+0.07}_{-0.13} and 1.84^{+2.90}_{-0.12}, respectively. The non-thermal component is considered to be produced via the inverse Compton (IC) process, as is often seen in the X-ray emission from radio lobes. From a re-analysis of radio observation data, the multiwavelength spectra strongly suggest that the seed photon source of the IC X-rays includes both cosmic microwave background radiation and synchrotron radiation from the lobes. The derived parameters indicate significant dominance of the electron energy density over the magnetic field energy density in the Cygnus A lobes under the rich ICM environment.Comment: 8 pages, 5 figures, accepted for publication in Ap

    The Magnetic Rayleigh-Taylor Instability in Three Dimensions

    Full text link
    We study the magnetic Rayleigh-Taylor instability in three dimensions, with focus on the nonlinear structure and evolution that results from different initial field configurations. We study strong fields in the sense that the critical wavelength l_c at which perturbations along the field are stable is a large fraction of the size of the computational domain. We consider magnetic fields which are initially parallel to the interface, but have a variety of configurations, including uniform everywhere, uniform in the light fluid only, and fields which change direction at the interface. Strong magnetic fields do not suppress instability, in fact by inhibiting secondary shear instabilities, they reduce mixing between the heavy and light fluid, and cause the rate of growth of bubbles and fingers to increase in comparison to hydrodynamics. Fields parallel to, but whose direction changes at, the interface produce long, isolated fingers separated by the critical wavelength l_c, which may be relevant to the morphology of the optical filaments in the Crab nebula.Comment: 14 pages, 9 pages, accepted by Ap

    Optical Conductivity of the Trellis-Lattice t-J Model: Charge Fluctuations in NaV_2O_5

    Full text link
    Optical conductivity of the trellis lattice t-J model at quarter filling is calculated by an exact-diagonalization technique on small clusters, whereby the valence state of V ions of NaV_2O_5 is considered. We show that the experimental features at \sim 1 eV, including peak positions, presence of shoulders, and anisotropic spectral weight, can be reproduced in reasonable range of parameter values, only by assuming that the system is in the charge disproportionated ground state. Possible reconciliation with experimental data suggesting the presence of uniform ladders at T>T_c is discussed.Comment: 4 pages, 4 gif figures. Minor revisions have been made. Hardcopies of figures (or the entire manuscript) can be obtained by e-mail request to [email protected]

    Investigation of thermal and magnetic properties of defects in a spin-gap compound NaV2O5

    Full text link
    The specific heat, magnetic susceptibility and ESR signals of a Na-deficient vanadate Na_xV_2O_5 (x=1.00 - 0.90) were studied in the temperature range 0.07 - 10 K, well below the transition point to a spin-gap state. The contribution of defects provided by sodium vacancies to the specific heat was observed. It has a low temperature part which does not tend to zero till at least 0.3 K and a high temperature power-like tail appears above 2 K. Such dependence may correspond to the existence of local modes and correlations between defects in V-O layers. The magnetic measurements and ESR data reveal S=1/2 degrees of freedom for the defects, with their effective number increasing in temperature and under magnetic field. The latter results in the nonsaturating magnetization at low temperature. No long-range magnetic ordering in the system of defects was found. A model for the defects based on electron jumps near vacancies is proposed to explain the observed effects. The concept of a frustrated two-dimensional correlated magnet induced by the defects is considered to be responsible for the absence of magnetic ordering.Comment: 6 pages, 8 figure
    corecore