39 research outputs found

    A novel approach to solve power flow for islanded microgrids using modified Newton Raphson with droop control of DG

    Get PDF
    The study of power flow analysis for microgrids has gained importance where several methods have been proposed to solve these problems. However, these schemes are complic ated and not easy to implement due to the absence of a slack bus as well as the dependence of the power on frequency as a result of the droop characteristics. This paper proposes simple and e ffec- tive modifications to the conventional method (Newton Raphs on) to compute the power flow for microgrids. The presented metho d provides a simple, easy to implement, and accurate approach to solve the power flow equations for microgrids. The propose d method is applied to two test systems: a 6-bus system and a 38- bus system. The results are compared against simulation result s from PSCAD/EMTDC which validate the effectiveness of the develo ped method. The proposed technique can be easily integrated in current commercially available power system software and c an be applied for power system studies method is applied to two test systems: a 6-bus system and a 38-bus system. The results are compared against simulation results from PSCAD/EMTDC which validate the effectiveness of the developed method. The proposed technique can be easily integrated in current commercially available power system software and can be applied for power system studies

    A simple and accurate approach to solve the power flow for balanced islanded microgrids

    Get PDF
    Power flow studies are very important in the planning or expansion of power system. With the integration of distributed generation (DG), micro-grids are becoming attractive. So, it is important to study the power flow of micro-grids. In grid connected mode, the power flow of the system can be solved in a conventional manner. In islanded mode, the conventional method (like Gauss Seidel) cannot be applied to solve power flow analysis. Hence some modifications are required to implement the conventional Gauss Seidel method to islanded micro-grids. This paper proposes a Modified Gauss Seidel (MGS) method, which is an extension of the conventional Gauss Seidel (GS) method. The proposed method is simple, easy to implement and accurate in solving the power flow analysis for islanded microgrids. The MGS algorithm is implemented on a 6 bus test system. The results are compared against the simulations results obtained from PSCAD/EMTDC which proves the accuracy of the proposed MGS algorithm

    Monolithic modular thyristor-based DC-Hub with zero reactive power circulation

    Get PDF
    The promising features of HVDC technology have led to the possibility of numerous renewable resources integration and enormous DC grids interconnection. In spite of the obstacles, these interconnections encounter such as the necessity to block DC faults, achieving isolation between different schemes, the ability to maintain power flow throughout different power flow profiles, and the interfacing with various infrastructures, the DC-Hub arises to overcome these interconnection obstacles being the excellent approach to enhance the DC grid capabilities. This paper proposes a new monolithic modular thyristor-based multilevel converter, which serves as the fundamental building block of the DC-Hub, offering advantages such as lower switch count, bidirectional power flow, and DC fault blocking capability. Moreover, a control algorithm, for zero reactive power circulation in the DC-Hub, is introduced. The proposed algorithm successfully mitigates the circulation of reactive power throughout the entire range of power flow. A comprehensive mathematical analysis, optimum design of converter parameters, and the proposed control technique, which suppress the circulating reactive power at full range of power flow, are illustrated. Finally, simulation modelling and hardware test rig are established to validate the claims of the DC-Hub at different normal and faulty scenarios

    Consanguinity and reproductive health among Arabs

    Get PDF
    Consanguineous marriages have been practiced since the early existence of modern humans. Until now consanguinity is widely practiced in several global communities with variable rates depending on religion, culture, and geography. Arab populations have a long tradition of consanguinity due to socio-cultural factors. Many Arab countries display some of the highest rates of consanguineous marriages in the world, and specifically first cousin marriages which may reach 25-30% of all marriages. In some countries like Qatar, Yemen, and UAE, consanguinity rates are increasing in the current generation. Research among Arabs and worldwide has indicated that consanguinity could have an effect on some reproductive health parameters such as postnatal mortality and rates of congenital malformations. The association of consanguinity with other reproductive health parameters, such as fertility and fetal wastage, is controversial. The main impact of consanguinity, however, is an increase in the rate of homozygotes for autosomal recessive genetic disorders. Worldwide, known dominant disorders are more numerous than known recessive disorders. However, data on genetic disorders in Arab populations as extracted from the Catalogue of Transmission Genetics in Arabs (CTGA) database indicate a relative abundance of recessive disorders in the region that is clearly associated with the practice of consanguinity

    Body mass index and dental caries in children and adolescents : a systematic review of literature published 2004 to 2011

    Get PDF
    The objectiveThe authors undertook an updated systematic review of the relationship between body mass index and dental caries in children and adolescents.MethodThe authors searched Medline, ISI, Cochrane, Scopus, Global Health and CINAHL databases and conducted lateral searches from reference lists for papers published from 2004 to 2011, inclusive. All empirical papers that tested associations between body mass index and dental caries in child and adolescent populations (aged 0 to 18 years) were included.ResultsDental caries is associated with both high and low body mass index.ConclusionA non-linear association between body mass index and dental caries may account for inconsistent findings in previous research. We recommend future research investigate the nature of the association between body mass index and dental caries in samples that include a full range of body mass index scores, and explore how factors such as socioeconomic status mediate the association between body mass index and dental caries.<br /

    Critique of the review of 'Water fluoridation for the prevention of dental caries' published by the Cochrane Collaboration in 2015

    Get PDF
    The Cochrane Review on water fluoridation for the prevention of dental caries was published in 2015 and attracted considerable interest and comment, especially in countries with extensive water fluoridation programmes. The Review had two objectives: (i) to evaluate the effects of water fluoridation (artificial or natural) on the prevention of dental caries, and (ii) to evaluate the effects of water fluoridation (artificial or natural) on dental fluorosis. The authors concluded, inter alia, that there was very little contemporary evidence, meeting the Review's inclusion criteria, that evaluated the effectiveness of water fluoridation for the prevention of dental caries. The purpose of this critique is to examine the conduct of the above Review, and to put it into context in the wider body of evidence regarding the effectiveness of water fluoridation. While the overall conclusion that water fluoridation is effective in caries prevention agrees with previous reviews, many important public health questions could not be answered by the Review because of the restrictive criteria used to judge adequacy of study design and risk of bias. The potential benefits of using wider criteria in order to achieve a fuller understanding of the effectiveness of water fluoridation are discussed

    Scheduled Perturbation To Reduce Nondetection Zone For Low Gain Sandia Frequency Shift Method

    No full text
    It is known that the choice of gain (K) in the Sandia frequency shift (SFS) scheme has direct impacts on the stability of a system with grid-connected distributed generations (DGs). In this paper, a scheduled perturbation technique is proposed to reduce the stability impact of K. In the proposed technique, chopping fraction (cf) is used to compensate for reduction in the value of K, where higher cf values are used to achieve zero nondetection zone (NDZ) under low gain SFS. It is shown by analysis that theoretical reduction of NDZ can be always achieved for a nonzero value of cf. Simulations for single- and multi-DGs systems are performed to verify the analytical analysis. It is shown that an appropriate design of scheduled signal duty cycle (d) is of critical importance to realize the proposed reduction in NDZ. While close synchronization of perturbation signals for multi-DG system is required, a delay of 0.33 s is shown to be tolerated for a two-DG system. Synchronization can be achieved either through locally synchronized timers or by limited communication among DGs. The proposed technique provides an attractive option for systems with high DG penetration by reducing the negative impact of K on stability

    Development Of Dynamic Estimators For Islanding Detection Of Inverter-Based Dg

    No full text
    In this paper, a new islanding detection method (IDM) is proposed to dynamically estimate islanding occurrence. The proposed dynamic estimators estimate amplitudes and phase angles of the current injected by the grid at the point of common coupling with the distributed generation (DG) in addition to the DG\u27s bus voltage. A distributed two-level algorithm is proposed to detect an islanding condition for single and multi-DG configurations. Analytical design and transient analysis are carried out for the islanding detection problem to determine the nondetection zone (NDZ) of the proposed islanding detection algorithm. A local low-frequency meshed communication network is sufficient to achieve distributed islanding detection capability for a general multi-DG network with negligible NDZ. It is shown through simulations that the proposed IDM can successfully distinguish an islanding condition from other disturbances that may occur in power system networks

    Scheduled Perturbation to Reduce Nondetection Zone for Low Gain Sandia Frequency Shift Method

    No full text
    It is known that the choice of gain (K) in the Sandia frequency shift (SFS) scheme has direct impacts on the stability of a system with grid-connected distributed generations (DGs). In this paper, a scheduled perturbation technique is proposed to reduce the stability impact of K. In the proposed technique, chopping fraction (cf) is used to compensate for reduction in the value of K, where higher cf values are used to achieve zero nondetection zone (NDZ) under low gain SFS. It is shown by analysis that theoretical reduction of NDZ can be always achieved for a nonzero value of cf. Simulations for single- and multi-DGs systems are performed to verify the analytical analysis. It is shown that an appropriate design of scheduled signal duty cycle (d) is of critical importance to realize the proposed reduction in NDZ. While close synchronization of perturbation signals for multi-DG system is required, a delay of 0.33 s is shown to be tolerated for a two-DG system. Synchronization can be achieved either through locally synchronized timers or by limited communication among DGs. The proposed technique provides an attractive option for systems with high DG penetration by reducing the negative impact of K on stability

    A Transient Stiffness Measure For Islanding Detection Of Multi-Dg Systems

    No full text
    Islanding detection is important to ensure the reliability and safety of distributed generation (DG). In this paper, a new active islanding detection method (IDM) is proposed, and it depends on individually estimating an overall transient stiffness measure for any multi-DG system to establish a clear separation between prior- and post-islanding stiffness. For the multi-DG system to avoid spectrum overlapping, each of its DGs is required to perturb at distinct frequencies. By using this concept of perturbation separation, the proposed technique can be applied to multi-DG systems without requiring any communication among the DGs. Simulation results show that the proposed technique is scalable and robust against different loading conditions and variations of grid stiffness levels as well as with respect to the number of connected DGs and different types of DG controllers. It is also shown that the proposed technique can successfully distinguish islanding conditions from other disturbances that may occur in power system networks
    corecore