80,156 research outputs found
Constrained Jackiw-Rebbi model gives McGreevy-Swingle model
We show that the recently considered McGreevy-Swingle model for Majorana
fermions in the presence of a 't Hooft-Polyakov magnetic monopole arises when
the Jackiw-Rebbi model is constrained to be conjugation self dual.Comment: 3 page
An Adaptive Entanglement Distillation Scheme Using Quantum Low Density Parity Check Codes
Quantum low density parity check (QLDPC) codes are useful primitives for
quantum information processing because they can be encoded and decoded
efficiently. Besides, the error correcting capability of a few QLDPC codes
exceeds the quantum Gilbert-Varshamov bound. Here, we report a numerical
performance analysis of an adaptive entanglement distillation scheme using
QLDPC codes. In particular, we find that the expected yield of our adaptive
distillation scheme to combat depolarization errors exceed that of Leung and
Shor whenever the error probability is less than about 0.07 or greater than
about 0.28. This finding illustrates the effectiveness of using QLDPC codes in
entanglement distillation.Comment: 12 pages, 6 figure
Robust H-infinity finite-horizon control for a class of stochastic nonlinear time-varying systems subject to sensor and actuator saturations
Copyright [2010] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected].
By choosing to view this document, you agree to all provisions of the copyright laws protecting it.This technical note addresses the robust H∞ finite-horizon output feedback control problem for a class of uncertain discrete stochastic nonlinear time-varying systems with both sensor and actuator saturations. In the system under investigation, all the system parameters are allowed to be time-varying, the parameter uncertainties are assumed to be of the polytopic type, and the stochastic nonlinearities are described by statistical means which can cover several classes of well-studied nonlinearities. The purpose of the problem addressed is to design an output feedback controller, over a given finite-horizon, such that the H∞ disturbance attenuation level is guaranteed for the nonlinear stochastic polytopic system in the presence of saturated sensor and actuator outputs. Sufficient conditions are first established for the robust H∞ performance through intensive stochastic analysis, and then a recursive linear matrix inequality (RLMI) approach is employed to design the desired output feedback controller achieving the prescribed H∞ disturbance rejection level. Simulation results demonstrate the effectiveness of the developed controller design scheme.This work was supported under Australian Research Council’s Discovery Projects funding
scheme (project DP0880494) and by the German Science Foundation (DFG) within the priority programme 1305: Control Theory of Digitally Networked Dynamical Systems. Recommended by Associate Editor H. Ito
Minority Game With Peer Pressure
To study the interplay between global market choice and local peer pressure,
we construct a minority-game-like econophysical model. In this so-called
networked minority game model, every selfish player uses both the historical
minority choice of the population and the historical choice of one's neighbors
in an unbiased manner to make decision. Results of numerical simulation show
that the level of cooperation in the networked minority game differs remarkably
from the original minority game as well as the prediction of the
crowd-anticrowd theory. We argue that the deviation from the crowd-anticrowd
theory is due to the negligence of the effect of a four point correlation
function in the effective Hamiltonian of the system.Comment: 10 pages, 3 figures in revtex 4.
Determination of Nonlinear Genetic Architecture using Compressed Sensing
We introduce a statistical method that can reconstruct nonlinear genetic
models (i.e., including epistasis, or gene-gene interactions) from
phenotype-genotype (GWAS) data. The computational and data resource
requirements are similar to those necessary for reconstruction of linear
genetic models (or identification of gene-trait associations), assuming a
condition of generalized sparsity, which limits the total number of gene-gene
interactions. An example of a sparse nonlinear model is one in which a typical
locus interacts with several or even many others, but only a small subset of
all possible interactions exist. It seems plausible that most genetic
architectures fall in this category. Our method uses a generalization of
compressed sensing (L1-penalized regression) applied to nonlinear functions of
the sensing matrix. We give theoretical arguments suggesting that the method is
nearly optimal in performance, and demonstrate its effectiveness on broad
classes of nonlinear genetic models using both real and simulated human
genomes.Comment: 20 pages, 8 figures. arXiv admin note: text overlap with
arXiv:1408.342
Does the BICEP2 Observation of Cosmological Tensor Modes Imply an Era of Nearly Planckian Energy Densities?
BICEP2 observations, interpreted most simply, suggest an era of inflation
with energy densities of order (, not far below the
Planck density. However, models of TeV gravity with large extra dimensions
might allow a very different interpretation involving much more modest energy
scales. We discuss the viability of inflation in such models, and conclude that
existing scenarios do not provide attractive alternatives to single field
inflation in four dimensions. Because the detection of tensor modes strengthens
our confidence that inflation occurred, it disfavors models of large extra
dimensions, at least for the moment.Comment: 4 pages, v3: version to appear in JHE
Instability of Quantum de Sitter Spacetime
Quantized fields (e.g., the graviton itself) in de Sitter (dS) spacetime lead
to particle production: specifically, we consider a thermal spectrum resulting
from the dS (horizon) temperature. The energy required to excite these
particles reduces slightly the rate of expansion and eventually modifies the
semiclassical spacetime geometry. The resulting manifold no longer has constant
curvature nor time reversal invariance, and back-reaction renders the classical
dS background unstable to perturbations. In the case of AdS, there exists a
global static vacuum state; in this state there is no particle production and
the analogous instability does not arise.Comment: 3 pages, v2: version to appear in JHE
- …
