309 research outputs found

    RAD6-RAD18-RAD5-pathway-dependent tolerance to chronic low-dose ultraviolet light

    Get PDF
    In nature, organisms are exposed to chronic low- dose ultraviolet light ( CLUV) as opposed to the acute high doses common to laboratory experiments. Analysis of the cellular response to acute high-dose exposure has delineated the importance of direct DNA repair by the nucleotide excision repair pathway(1) and for checkpoint-induced cell cycle arrest in promoting cell survival(2). Here we examine the response of yeast cells to CLUV and identify a key role for the RAD6-RAD18-RAD5 error- free postreplication repair (RAD6 error-free PRR) pathway(3,4) in promoting cell growth and survival. We show that loss of the RAD6 error- free PRR pathway results in DNA-damage-checkpoint- induced G2 arrest in CLUV-exposed cells, whereas wild-type and nucleotide-excision-repair-deficient cells are largely unaffected. Cell cycle arrest in the absence of the RAD6 error- free PRR pathway was not caused by a repair defect or by the accumulation of ultraviolet-induced photoproducts. Notably, we observed increased replication protein A (RPA) and Rad52 - yellow fluorescent protein foci(5) in the CLUV- exposed rad18 Delta cells and demonstrated that Rad52- mediated homologous recombination is required for the viability of the rad18 Delta cells after release from CLUV- induced G2 arrest. These and other data presented suggest that, in response to environmental levels of ultraviolet exposure, the RAD6 error- free PRR pathway promotes replication of damaged templates without the generation of extensive single- stranded DNA regions. Thus, the error- free PRR pathway is specifically important during chronic low- dose ultraviolet exposure to prevent counter- productive DNA checkpoint activation and allow cells to proliferate normally

    Unbinding Transition Induced by Osmotic Pressure in Relation to Unilamellar Vesicle Formation

    Full text link
    Small-angle X-ray scattering and phase-contrast microscopy experiments were performed to investigate the effect of the osmotic pressure on vesicle formation in a dioleoylphosphatidylcholine (DOPC)/water/NaI system. Multi-lamellar vesicles were formed when a pure lipid film was hydrated with an aqueous solution of NaI. On the other hand, uni-lamellar vesicles (ULVs) were formed when a lipid film mixed with an enough amount of NaI was hydrated. To confirm the effect of the osmotic pressure due to NaI, a free-energy calculation was performed. This result showed that the osmotic pressure induced an unbinding transition on the hydration process, which resulted in ULV formation

    Well-posedness of the Viscous Boussinesq System in Besov Spaces of Negative Order Near Index s=−1s=-1

    Full text link
    This paper is concerned with well-posedness of the Boussinesq system. We prove that the nn (n≥2n\ge2) dimensional Boussinesq system is well-psoed for small initial data (u⃗0,θ0)(\vec{u}_0,\theta_0) (∇⋅u⃗0=0\nabla\cdot\vec{u}_0=0) either in (B∞,1−1∩B∞,∞−1,1)×Bp,r−1({B}^{-1}_{\infty,1}\cap{B^{-1,1}_{\infty,\infty}})\times{B}^{-1}_{p,r} or in B∞,∞−1,1×Bp,∞−1,ϵ{B^{-1,1}_{\infty,\infty}}\times{B}^{-1,\epsilon}_{p,\infty} if r∈[1,∞]r\in[1,\infty], ϵ>0\epsilon>0 and p∈(n2,∞)p\in(\frac{n}{2},\infty), where Bp,qs,ϵB^{s,\epsilon}_{p,q} (s∈Rs\in\mathbb{R}, 1≤p,q≤∞1\leq p,q\leq\infty, ϵ>0\epsilon>0) is the logarithmically modified Besov space to the standard Besov space Bp,qsB^{s}_{p,q}. We also prove that this system is well-posed for small initial data in (B∞,1−1∩B∞,∞−1,1)×(Bn2,1−1∩Bn2,∞−1,1)({B}^{-1}_{\infty,1}\cap{B^{-1,1}_{\infty,\infty}})\times({B}^{-1}_{\frac{n}{2},1}\cap{B^{-1,1}_{\frac{n}{2},\infty}}).Comment: 18 page

    The results of test run 1A with the experimental facility "AUWARM"

    Get PDF
    The experimental facility "AUWARM" in spite of being designed for hydrogen permeation tests under steam/methane reforming conditions, was also used for studies on the hydrogen permeation under conditions of coal gasification with steam. As an-attempt, specimens were made of a tube which had been exposed in a gas generator, and tested in the facility. The experimental results indicate that in principle good oxide layers establish in a process gas typical for coal gasification with steam,whereas the original scales have probably been damaged by the sample manufacturing

    Überblick über die neueren Arbeiten auf dem Gebiet des Wasserstoff-und Tritiumverhaltens in Hochtemperaturreaktoren

    Get PDF
    This report comprises the contributions of members of the "Institut für Reaktor-Entwicklung" (IRE) to the "Und Seminar on Hydrogen and Tritium Behaviour in High Temperature Reactors", which was held March 8, 1978, at KFA Jülich. At the beginning the problem is introduced and the investigations at IRE related to this area are presented in their context. Then follow the individual papers on the subjects mentioned. At first the experiences with the operation of the experimental facility AUWARM and the newest results in the current testing program are discussed. Therafter the model investigations with hydrogen and deuterium on the problem of hydrogen- and tritium permeation are reported and a computer program for balancing tritium in pebble-bed-HTRs is described. Last notleast the studies on the behaviour of tritium in matrix graphite and the experiments on primary coolant purification by titanium gettering are shortly communicated. The results given in this report are preliminary informations on the actual status of the current investigations

    ruvA Mutants that resolve Holliday junctions but do not reverse replication forks

    Get PDF
    RuvAB and RuvABC complexes catalyze branch migration and resolution of Holliday junctions (HJs) respectively. In addition to their action in the last steps of homologous recombination, they process HJs made by replication fork reversal, a reaction which occurs at inactivated replication forks by the annealing of blocked leading and lagging strand ends. RuvAB was recently proposed to bind replication forks and directly catalyze their conversion into HJs. We report here the isolation and characterization of two separation-of-function ruvA mutants that resolve HJs, based on their capacity to promote conjugational recombination and recombinational repair of UV and mitomycin C lesions, but have lost the capacity to reverse forks. In vivo and in vitro evidence indicate that the ruvA mutations affect DNA binding and the stimulation of RuvB helicase activity. This work shows that RuvA's actions at forks and at HJs can be genetically separated, and that RuvA mutants compromised for fork reversal remain fully capable of homologous recombination

    Structure and mechanism of human DNA polymerase η

    Get PDF
    The variant form of the human syndrome xeroderma pigmentosum (XPV) is caused by a deficiency in DNA polymerase eta (Pol eta), a DNA polymerase that enables replication through ultraviolet-induced pyrimidine dimers. Here we report high-resolution crystal structures of human Pol eta at four consecutive steps during DNA synthesis through cis-syn cyclobutane thymine dimers. Pol eta acts like a 'molecular splint' to stabilize damaged DNA in a normal B-form conformation. An enlarged active site accommodates the thymine dimer with excellent stereochemistry for two-metal ion catalysis. Two residues conserved among Pol eta orthologues form specific hydrogen bonds with the lesion and the incoming nucleotide to assist translesion synthesis. On the basis of the structures, eight Pol eta missense mutations causing XPV can be rationalized as undermining the molecular splint or perturbing the active-site alignment. The structures also provide an insight into the role of Pol eta in replicating through D loop and DNA fragile sites
    • …
    corecore