1,961 research outputs found

    Some aspects of the ecology of the leatherback turtle Dermochelys coriacea at Laguna Jalova, Costa Rica

    Get PDF
    The ecology and reproductive biology of the leatherback turtle (Dennochelys coriacea) was studied on a high-energy nesting beach near Laguna Jalova, Costa Rica, between 28 March and 8 June 1985. The peak of nesting was between 15 April and 21 May. Leatherbacks here measured an average 146.6 cm straightline standard carapace length and laid an average 81.57 eggs. The eggs measured a mean 52.12 mm diameter and weighed an average of 85.01 g. Significant positive relationships were found between the carapace lengths of nesters and their clutch sizes and average diameter and weight of eggs. The total clutch weighed between 4.02 and 13.39 kg, and yolkless eggs accounted for an average 12.4% of this weight. The majority of nesters dug shallow (<24 cm) body pits and spent an average 81 minutes at the nest site. A significant number of c1utcbes were laid below the berm crest. In a hatchery 42.2% of the eggs hatched, while in natural nests 70.2% hatched. The average hatchling carapace length was 59.8 mm and weight was 44.6 g. The longevity of leatherback tracks and nests on the beach was affected by weather. One nester was recaptured about one year later off the coast of Mississippi, U.S.A. Egg poaching was intense on some sections of the Costa Rican coast. Four aerial surveys in four different months provided the basis for comparing density of nesting on seven sectors of the Caribbean coast of Costa Rica. The beach at Jalova is heavily used by green turtles (Chelonia mydJJs) after the leatherback nesting season. The role of the Parque Nacional Tortuguero in conserving the leatherback and green turtle is discussed.(PDF file contains 20 pages.

    Slip line growth as a critical phenomenon

    Full text link
    We study the growth of slip line in a plastically deforming crystal by numerical simulation of a double-ended pile-up model with a dislocation source at one end, and an absorbing wall at the other end. In presence of defects, the pile-up undergoes a second order non-equilibrium phase transition as a function of stress, which can be characterized by finite size scaling. We obtain a complete set of critical exponents and scaling functions that describe the spatiotemporal dynamics of the slip line. Our findings allow to reinterpret earlier experiments on slip line kinematography as evidence of a dynamic critical phenomenon.Comment: 4 pages, 4 figure

    Modelling two-dimensional Crystals with Defects under Stress: Superelongation of Carbon Nanotubes at high Temperatures

    Full text link
    We calculate analytically the phase diagram of a two-dimensional square crystal and its wrapped version with defects under external homogeneous stress as a function of temperature using a simple elastic lattice model that allows for defect formation. The temperature dependence turns out to be very weak. The results are relevant for recent stress experiments on carbon nanotubes. Under increasing stress, we find a crossover regime which we identify with a cracking transition that is almost independent of temperature. Furthermore, we find an almost stress-independent melting point. In addition, we derive an enhanced ductility with relative strains before cracking between 200-400%, in agreement with carbon nanotube experiments. The specific values depend on the Poisson ratio and the angle between the external force and the crystal axes. We give arguments that the results for carbon nanotubes are not much different to the wrapped square crystal.Comment: 12 pages, 6 eps figures, section VI added discussing the modifications of our model when applied to tube

    Dislocation core field. I. Modeling in anisotropic linear elasticity theory

    Get PDF
    Aside from the Volterra field, dislocations create a core field, which can be modeled in linear anisotropic elasticity theory with force and dislocation dipoles. We derive an expression of the elastic energy of a dislocation taking full account of its core field and show that no cross term exists between the Volterra and the core fields. We also obtain the contribution of the core field to the dislocation interaction energy with an external stress, thus showing that dislocation can interact with a pressure. The additional force that derives from this core field contribution is proportional to the gradient of the applied stress. Such a supplementary force on dislocations may be important in high stress gradient regions, such as close to a crack tip or in a dislocation pile-up

    Ground state of a large number of particles on a frozen topography

    Full text link
    Problems consisting in finding the ground state of particles interacting with a given potential constrained to move on a particular geometry are surprisingly difficult. Explicit solutions have been found for small numbers of particles by the use of numerical methods in some particular cases such as particles on a sphere and to a much lesser extent on a torus. In this paper we propose a general solution to the problem in the opposite limit of a very large number of particles M by expressing the energy as an expansion in M whose coefficients can be minimized by a geometrical ansatz. The solution is remarkably universal with respect to the geometry and the interaction potential. Explicit solutions for the sphere and the torus are provided. The paper concludes with several predictions that could be verified by further theoretical or numerical work.Comment: 9 pages, 9 figures, LaTeX fil

    Theoretical study of kinks on screw dislocation in silicon

    Full text link
    Theoretical calculations of the structure, formation and migration of kinks on a non-dissociated screw dislocation in silicon have been carried out using density functional theory calculations as well as calculations based on interatomic potential functions. The results show that the structure of a single kink is characterized by a narrow core and highly stretched bonds between some of the atoms. The formation energy of a single kink ranges from 0.9 to 1.36 eV, and is of the same order as that for kinks on partial dislocations. However, the kinks migrate almost freely along the line of an undissociated dislocation unlike what is found for partial dislocations. The effect of stress has also been investigated in order to compare with previous silicon deformation experiments which have been carried out at low temperature and high stress. The energy barrier associated with the formation of a stable kink pair becomes as low as 0.65 eV for an applied stress on the order of 1 GPa, indicating that displacements of screw dislocations likely occur via thermally activated formation of kink pairs at room temperature

    Ab initio parametrised model of strain-dependent solubility of H in alpha-iron

    Full text link
    The calculated effects of interstitial hydrogen on the elastic properties of alpha-iron from our earlier work are used to describe the H interactions with homogeneous strain fields using ab initio methods. In particular we calculate the H solublility in Fe subject to hydrostatic, uniaxial, and shear strain. For comparison, these interactions are parametrised successfully using a simple model with parameters entirely derived from ab initio methods. The results are used to predict the solubility of H in spatially-varying elastic strain fields, representative of realistic dislocations outside their core. We find a strong directional dependence of the H-dislocation interaction, leading to strong attraction of H by the axial strain components of edge dislocations and by screw dislocations oriented along the critical slip direction. We further find a H concentration enhancement around dislocation cores, consistent with experimental observations.Comment: part 2/2 from splitting of 1009.3784 (first part was 1102.0187), minor changes from previous version

    Mesoscopic Analysis of Structure and Strength of Dislocation Junctions in FCC Metals

    Full text link
    We develop a finite element based dislocation dynamics model to simulate the structure and strength of dislocation junctions in FCC crystals. The model is based on anisotropic elasticity theory supplemented by the explicit inclusion of the separation of perfect dislocations into partial dislocations bounding a stacking fault. We demonstrate that the model reproduces in precise detail the structure of the Lomer-Cottrell lock already obtained from atomistic simulations. In light of this success, we also examine the strength of junctions culminating in a stress-strength diagram which is the locus of points in stress space corresponding to dissolution of the junction.Comment: 9 Pages + 4 Figure

    Theoretical study of dislocation nucleation from simple surface defects in semiconductors

    Full text link
    Large-scale atomistic calculations, using empirical potentials for modeling semiconductors, have been performed on a stressed system with linear surface defects like steps. Although the elastic limits of systems with surface defects remain close to the theoretical strength, the results show that these defects weaken the atomic structure, initializing plastic deformations, in particular dislocations. The character of the dislocation nucleated can be predicted considering both the resolved shear stress related to the applied stress orientation and the Peierls stress. At low temperature, only glide events in the shuffle set planes are observed. Then they progressively disappear and are replaced by amorphization/melting zones at a temperature higher than 900 K

    Elastic Instability Triggered Pattern Formation

    Get PDF
    Recent experiments have exploited elastic instabilities in membranes to create complex patterns. However, the rational design of such structures poses many challenges, as they are products of nonlinear elastic behavior. We pose a simple model for determining the orientational order of such patterns using only linear elasticity theory which correctly predicts the outcomes of several experiments. Each element of the pattern is modeled by a "dislocation dipole" located at a point on a lattice, which then interacts elastically with all other dipoles in the system. We explicitly consider a membrane with a square lattice of circular holes under uniform compression and examine the changes in morphology as it is allowed to relax in a specified direction.Comment: 15 pages, 7 figures, the full catastroph
    corecore