166 research outputs found
Spin susceptibility of underdoped cuprates: the case of Ortho-II YBa_2Cu_3O_{6.5}
Recent inelastic neutron scattering measurements found that the spin
susceptibility of detwinned and highly ordered ortho-II YBa_2Cu_3O_{6.5}
exhibits, in both the normal and superconducting states, one-dimensional
incommensurate modulations at low energies which were interpreted as a
signature of dynamic stripes. We propose an alternative model based on
quasiparticle transitions between the arcs of a truncated Fermi surface. Such
transitions are resonantly enhanced by scattering to the triplet spin
resonance. We show that the anisotropy in the experimental spin response is
consistent with this model if the gap at the saddle points is anisotropic.Comment: 5 fives, 3 postscript figure
Two-gap superconductivity in Ba_1-xK_xFe_2As_2: A complementary study of the magnetic penetration depth by \muSR and ARPES
We investigate the magnetic penetration depth \lambda in superconducting
Ba_1-xK_xFe_2As_2 (T_c\simeq32K) with muon-spin rotation (\muSR) and
angle-resolved photoemission (ARPES). Using \muSR, we find the
penetration-depth anisotropy \gamma_\lambda=\lambda_c/\lambda_{ab} and the
second-critical-field anisotropy \gamma_{H_c2} to show an opposite T-evolution
below T_c. This dichotomy resembles the situation in the two-gap superconductor
MgB_2. A two-gap scenario is also suggested by an inflection point in the
in-plane penetration depth \lambda_ab around 7K. The complementarity of \muSR
and ARPES allows us to pinpoint the values of the two gaps and to arrive to a
remarkable agreement between the two techniques concerning the full T-evolution
of \lambda_ab. This provides further support for the described scenario and
establishes ARPES as a tool to assess macroscopic properties of the
superconducting condensate.Comment: Accepted for publication by Phys. Rev. Let
Fermi surface instabilities at finite Temperature
We present a new method to detect Fermi surface instabilities for interacting
systems at finite temperature. We first apply it to a list of cases studied
previously, recovering already known results in a very economic way, and
obtaining most of the information on the phase diagram analytically. As an
example, in the continuum limit we obtain the critical temperature as an
implicit function of the magnetic field and the chemical potential
. By applying the method to a model proposed to describe reentrant
behavior in , we reproduce the phase diagram obtained
experimentally and show the presence of a non-Fermi Liquid region at
temperatures above the nematic phase.Comment: 10 pages, 10 figure
Similar zone-center gaps in the low-energy spin-wave spectra of NaFeAs and BaFe2As2
We report results of inelastic-neutron-scattering measurements of low-energy
spin-wave excitations in two structurally distinct families of iron-pnictide
parent compounds: Na(1-{\delta})FeAs and BaFe2As2. Despite their very different
values of the ordered magnetic moment and N\'eel temperatures, T_N, in the
antiferromagnetic state both compounds exhibit similar spin gaps of the order
of 10 meV at the magnetic Brillouin-zone center. The gap opens sharply below
T_N, with no signatures of a precursor gap at temperatures between the
orthorhombic and magnetic phase transitions in Na(1-{\delta})FeAs. We also find
a relatively weak dispersion of the spin-wave gap in BaFe2As2 along the
out-of-plane momentum component, q_z. At the magnetic zone boundary (q_z = 0),
spin excitations in the ordered state persist down to 20 meV, which implies a
much smaller value of the effective out-of-plane exchange interaction, J_c, as
compared to previous estimates based on fitting the high-energy spin-wave
dispersion to a Heisenberg-type model.Comment: 5 pages, 4 figures, 1 tabl
Nernst Effect of stripe ordering LaEuSrCuO
We investigate the transport properties of
LaEuSrCuO (, 0.08, 0.125, 0.15, 0.2) with a
special focus on the Nernst effect in the normal state. Various anomalous
features are present in the data. For and 0.15 a kink-like anomaly is
present in the vicinity of the onset of charge stripe order in the LTT phase,
suggestive of enhanced positive quasiparticle Nernst response in the stripe
ordered phase. At higher temperature, all doping levels except exhibit
a further kink anomaly in the LTO phase which cannot unambiguously be related
to stripe order. Moreover, a direct comparison between the Nernst coefficients
of stripe ordering LaEuSrCuO and superconducting
LaSrCuO at the doping levels and reveals
only weak differences. Our findings make high demands on any scenario
interpreting the Nernst response in hole-doped cuprates
Strain and composition dependence of the orbital polarization in nickelate superlattices
A combined analysis of x-ray absorption and resonant reflectivity data was
used to obtain the orbital polarization profiles of superlattices composed of
four-unit-cell-thick layers of metallic LaNiO3 and layers of insulating RXO3
(R=La, Gd, Dy and X=Al, Ga, Sc), grown on substrates that impose either
compressive or tensile strain. This superlattice geometry allowed us to partly
separate the influence of epitaxial strain from interfacial effects controlled
by the chemical composition of the insulating blocking layers. Our quantitative
analysis reveal orbital polarizations up to 25%. We further show that strain is
the most effective control parameter, whereas the influence of the chemical
composition of the blocking layers is comparatively small.Comment: 9 pages, 8 figure
Symmetry and disorder of the vitreous vortex lattice in an overdoped BaFe_{2-x}Co_xAs_2 superconductor: Indication for strong single-vortex pinning
The disordered flux line lattice in single crystals of the slightly overdoped
aFe_{2-x}Co_xAs_2 (x = 0.19, Tc = 23 K) superconductor is studied by
magnetization measurements, small-angle neutron scattering (SANS), and magnetic
force microscopy (MFM). In the whole range of magnetic fields up to 9 T, vortex
pinning precludes the formation of an ordered Abrikosov lattice. Instead, a
vitreous vortex phase (vortex glass) with a short-range hexagonal order is
observed. Statistical processing of MFM datasets lets us directly measure its
radial and angular distribution functions and extract the radial correlation
length \zeta. In contrast to predictions of the collective pinning model, no
increase in the correlated volume with the applied field is observed. Instead,
we find that \zeta decreases as 1.3*R1 ~ H^(-1/2) over four decades of the
applied magnetic field, where R1 is the radius of the first coordination shell
of the vortex lattice. Such universal scaling of \zeta implies that the vortex
pinning in iron arsenides remains strong even in the absence of static
magnetism. This result is consistent with all the real- and reciprocal-space
vortex-lattice measurements in overdoped as-grown aFe_{2-x}Co_xAs_2 published
to date and is thus sample-independent. The failure of the collective pinning
model suggests that the vortices remain in the single-vortex pinning limit even
in high magnetic fields up to 9 T.Comment: 11 pages, 6 figure
Symmetry and disorder of the vitreous vortex lattice in an overdoped BaFe_{2-x}Co_xAs_2 superconductor: Indication for strong single-vortex pinning
The disordered flux line lattice in single crystals of the slightly overdoped
aFe_{2-x}Co_xAs_2 (x = 0.19, Tc = 23 K) superconductor is studied by
magnetization measurements, small-angle neutron scattering (SANS), and magnetic
force microscopy (MFM). In the whole range of magnetic fields up to 9 T, vortex
pinning precludes the formation of an ordered Abrikosov lattice. Instead, a
vitreous vortex phase (vortex glass) with a short-range hexagonal order is
observed. Statistical processing of MFM datasets lets us directly measure its
radial and angular distribution functions and extract the radial correlation
length \zeta. In contrast to predictions of the collective pinning model, no
increase in the correlated volume with the applied field is observed. Instead,
we find that \zeta decreases as 1.3*R1 ~ H^(-1/2) over four decades of the
applied magnetic field, where R1 is the radius of the first coordination shell
of the vortex lattice. Such universal scaling of \zeta implies that the vortex
pinning in iron arsenides remains strong even in the absence of static
magnetism. This result is consistent with all the real- and reciprocal-space
vortex-lattice measurements in overdoped as-grown aFe_{2-x}Co_xAs_2 published
to date and is thus sample-independent. The failure of the collective pinning
model suggests that the vortices remain in the single-vortex pinning limit even
in high magnetic fields up to 9 T.Comment: 11 pages, 6 figure
- …