2,505 research outputs found

    Learning Mixtures of Gaussians in High Dimensions

    Full text link
    Efficiently learning mixture of Gaussians is a fundamental problem in statistics and learning theory. Given samples coming from a random one out of k Gaussian distributions in Rn, the learning problem asks to estimate the means and the covariance matrices of these Gaussians. This learning problem arises in many areas ranging from the natural sciences to the social sciences, and has also found many machine learning applications. Unfortunately, learning mixture of Gaussians is an information theoretically hard problem: in order to learn the parameters up to a reasonable accuracy, the number of samples required is exponential in the number of Gaussian components in the worst case. In this work, we show that provided we are in high enough dimensions, the class of Gaussian mixtures is learnable in its most general form under a smoothed analysis framework, where the parameters are randomly perturbed from an adversarial starting point. In particular, given samples from a mixture of Gaussians with randomly perturbed parameters, when n > {\Omega}(k^2), we give an algorithm that learns the parameters with polynomial running time and using polynomial number of samples. The central algorithmic ideas consist of new ways to decompose the moment tensor of the Gaussian mixture by exploiting its structural properties. The symmetries of this tensor are derived from the combinatorial structure of higher order moments of Gaussian distributions (sometimes referred to as Isserlis' theorem or Wick's theorem). We also develop new tools for bounding smallest singular values of structured random matrices, which could be useful in other smoothed analysis settings

    Global Solution to the Three-Dimensional Incompressible Flow of Liquid Crystals

    Full text link
    The equations for the three-dimensional incompressible flow of liquid crystals are considered in a smooth bounded domain. The existence and uniqueness of the global strong solution with small initial data are established. It is also proved that when the strong solution exists, all the global weak solutions constructed in [16] must be equal to the unique strong solution

    Orientability and energy minimization in liquid crystal models

    Full text link
    Uniaxial nematic liquid crystals are modelled in the Oseen-Frank theory through a unit vector field nn. This theory has the apparent drawback that it does not respect the head-to-tail symmetry in which nn should be equivalent to -nn. This symmetry is preserved in the constrained Landau-de Gennes theory that works with the tensor Q=s(n⊗n−13Id)Q=s\big(n\otimes n- \frac{1}{3} Id\big).We study the differences and the overlaps between the two theories. These depend on the regularity class used as well as on the topology of the underlying domain. We show that for simply-connected domains and in the natural energy class W1,2W^{1,2} the two theories coincide, but otherwise there can be differences between the two theories, which we identify. In the case of planar domains we completely characterise the instances in which the predictions of the constrained Landau-de Gennes theory differ from those of the Oseen-Frank theory

    Lower bounds for nodal sets of Dirichlet and Neumann eigenfunctions

    Full text link
    Let \phi\ be a Dirichlet or Neumann eigenfunction of the Laplace-Beltrami operator on a compact Riemannian manifold with boundary. We prove lower bounds for the size of the nodal set {\phi=0}.Comment: 7 page

    Testing Students with Special Educational Needs in Large-Scale Assessments – Psychometric Properties of Test Scores and Associations with Test Taking Behavior

    Get PDF
    Assessing competencies of students with special educational needs in learning (SEN-L) poses a challenge for large-scale assessments (LSAs). For students with SEN-L, the available competence tests may fail to yield test scores of high psychometric quality, which are—at the same time—measurement invariant to test scores of general education students. We investigated whether we can identify a subgroup of students with SEN-L, for which measurement invariant competence measures of adequate psychometric quality may be obtained with tests available in LSAs. We furthermore investigated whether differences in test-taking behavior may explain dissatisfying psychometric properties and measurement non-invariance of test scores within LSAs. We relied on person fit indices and mixture distribution models to identify students with SEN-L for whom test scores with satisfactory psychometric properties and measurement invariance may be obtained. We also captured differences in test-taking behavior related to guessing and missing responses. As a result we identified a subgroup of students with SEN-L for whom competence scores of adequate psychometric quality that are measurement invariant to those of general education students were obtained. Concerning test taking behavior, there was a small number of students who unsystematically picked response options. Removing these students from the sample slightly improved item fit. Furthermore, two different patterns of missing responses were identified that explain to some extent problems in the assessments of students with SEN-L.Peer Reviewe

    Grid services for the MAGIC experiment

    Full text link
    Exploring signals from the outer space has become an observational science under fast expansion. On the basis of its advanced technology the MAGIC telescope is the natural building block for the first large scale ground based high energy gamma-ray observatory. The low energy threshold for gamma-rays together with different background sources leads to a considerable amount of data. The analysis will be done in different institutes spread over Europe. Therefore MAGIC offers the opportunity to use the Grid technology to setup a distributed computational and data intensive analysis system with the nowadays available technology. Benefits of Grid computing for the MAGIC telescope are presented.Comment: 5 pages, 1 figures, to be published in the Proceedings of the 6th International Symposium ''Frontiers of Fundamental and Computational Physics'' (FFP6), Udine (Italy), Sep. 26-29, 200

    Nonlinear Hodge maps

    Full text link
    We consider maps between Riemannian manifolds in which the map is a stationary point of the nonlinear Hodge energy. The variational equations of this functional form a quasilinear, nondiagonal, nonuniformly elliptic system which models certain kinds of compressible flow. Conditions are found under which singular sets of prescribed dimension cannot occur. Various degrees of smoothness are proven for the sonic limit, high-dimensional flow, and flow having nonzero vorticity. The gradient flow of solutions is estimated. Implications for other quasilinear field theories are suggested.Comment: Slightly modified and updated version; tcilatex, 32 page
    • …
    corecore