1,112 research outputs found

    Automated assembly of oligosaccharides containing multiple cis-glycosidic linkages

    Get PDF
    Automated glycan assembly (AGA) has advanced from a concept to a commercial technology that rapidly provides access to diverse oligosaccharide chains as long as 30-mers. To date, AGA was mainly employed to incorporate trans- glycosidic linkages, where C2 participating protecting groups ensure stereoselective couplings. Stereocontrol during the installation of cis- glycosidic linkages cannot rely on C2-participation and anomeric mixtures are typically formed. Here, we demonstrate that oligosaccharides containing multiple cis-glycosidic linkages can be prepared efficiently by AGA using monosaccharide building blocks equipped with remote participating protecting groups. The concept is illustrated by the automated syntheses of biologically relevant oligosaccharides bearing various cis-galactosidic and cis-glucosidic linkages. This work provides further proof that AGA facilitates the synthesis of complex oligosaccharides with multiple cis-linkages and other biologically important oligosaccharides

    Pushing the Limits of Automated Glycan Assembly: Synthesis of a 50mer Polymannoside

    No full text
    Automated glycan assembly (AGA) enables rapid access to oligosaccharides. The overall length of polymers created via automated solid phase synthesis depends on very high yields at every step to obtain full length product. The synthesis of long polymers serves as the ultimate test of the efficiency and reliability of synthetic processes. A series of Man-(1[rightward arrow]6)-[small alpha]-Man linked oligosaccharides up to a 50mer, the longest synthetic sequence yet assembled from monosaccharides, has been realized via a 102 step synthesis. We identified a suitable mannose building block and applied a capping step in the final five AGA cycles to minimize (n-1) deletion sequences that are otherwise difficult to remove by HPLC

    Transport control by coherent zonal flows in the core/edge transitional regime

    Get PDF
    3D Braginskii turbulence simulations show that the energy flux in the core/edge transition region of a tokamak is strongly modulated - locally and on average - by radially propagating, nearly coherent sinusoidal or solitary zonal flows. The flows are geodesic acoustic modes (GAM), which are primarily driven by the Stringer-Winsor term. The flow amplitude together with the average anomalous transport sensitively depend on the GAM frequency and on the magnetic curvature acting on the flows, which could be influenced in a real tokamak, e.g., by shaping the plasma cross section. The local modulation of the turbulence by the flows and the excitation of the flows are due to wave-kinetic effects, which have been studied for the first time in a turbulence simulation.Comment: 5 pages, 5 figures, submitted to PR

    Constraints of FL Motif on the Targeting and Function of Sodium-Bicarbonate Cotransporter 1

    Get PDF
    A C-terminal dihydrophobic FL motif plays a vital role in the basolateral targeting of sodium bicarbonate cotransporter 1. To further characterize the role of dihydrophobic FL motif, 1). the FL motif in wild type (PFLS) was reversed to LF (PLFS), 2). the FL motif (PFLS) was shifted upstream (FLPS), and 3). the FL motif (PFLS) was shifted downstream (PSFL). The wild type (PFLS) and its mutant (PLFS) were exclusively expressed on the basolateral membrane by con-focal microscopy, however, the mutant (FLPS) and (PSFL) were predominantly mistargeted to the apical membrane and the cytoplasm, respectively. Functional studies showed that the mutant (PSFL) displayed a remarkably reduced current (p value<0.05 vs wild type). The mutant (PSFL) displayed a more reduced membrane surface expression than the wild type and was co-localized with ER marker. The protein sequence spanning FL motif in kNBC1 C-terminal cytoplasmic tail shows a helical structure, mutants (PLFS) and (PSFL) reduce a-helical contents by circular dichroism study. Reversed FL isn't a constraint for basolateral targeting, but shifting it upstream and downstream are ones

    Automated glycan assembly of oligosaccharides related to arabinogalactan proteins

    No full text
    Arabinogalactan proteins are heavily glycosylated proteoglycans in plants. Their glycan portion consists of type-II arabinogalactan polysaccharides whose heterogeneity hampers the assignment of the arabinogalactan protein function. Synthetic chemistry is key to the procurement of molecular probes for plant biologists. Described is the automated glycan assembly of 14 oligosaccharides from four monosaccharide building blocks. These linear and branched glycans represent key structural features of natural type-II arabinogalactans and will serve as tools for arabinogalactan biology

    Shear-Flow Driven Current Filamentation: Two-Dimensional Magnetohydrodynamic Simulations

    Get PDF
    The process of current filamentation in permanently externally driven, initially globally ideal plasmas is investigated by means of two-dimensional Magnetohydrodynamic (MHD)-simulations. This situation is typical for astrophysical systems like jets, the interstellar and intergalactic medium where the dynamics is dominated by external forces. Two different cases are studied. In one case, the system is ideal permanently and dissipative processes are excluded. In the second case, a system with a current density dependent resistivity is considered. This resistivity is switched on self-consistently in current filaments and allows for local dissipation due to magnetic reconnection. Thus one finds tearing of current filaments and, besides, merging of filaments due to coalescence instabilities. Energy input and dissipation finally balance each other and the system reaches a state of constant magnetic energy in time.Comment: 32 Pages, 13 Figures. accepted, to appear in Physics of Plasmas (049012

    Modular automated solid phase synthesis of dermatan sulfate oligosaccharides

    Get PDF
    Dermatan sulfates are glycosaminoglycan polysaccharides that serve a multitude of biological roles as part of the extracellular matrix. Orthogonally protected D-galactosamine and L-iduronic acid building blocks and a photo- cleavable linker are instrumental for the automated synthesis of dermatan sulfate oligosaccharides. Conjugation-ready oligosaccharides were obtained in good yield

    Composite Skyrme Model with Vector Mesons

    Full text link
    We study the composite Skyrme model, proposed by Cheung and G\"{u}rsey, introducing vector mesons in a chiral Lagrangian. We calculate the static properties of baryons and compare with results obtained from models without vector mesons.Comment: LaTeX, 9 pages, 3 figures, to be published in Phys. Rev.
    • …
    corecore