230 research outputs found

    The Iron Unresolved Transition Array in Active Galactic Nuclei

    Full text link
    The unresolved transition array (UTA) of iron M-shell ions is a prominent absorption feature in the X-ray spectrum of many active galactic nuclei (AGNs). Modeling photoionized plasmas in attempt to match the observed silicon and oxygen lines fail to predict the level of ionization of iron as inferred by this feature. It is suggested that the discrepancy is due to underestimation of the low-temperature dielectronic recombination rates for iron M-shell ions. Modified ionization balance calculations, based on new (guessed) atomic data, support this idea. The results are shown and compared to the global properties of several observed UTAs. Implications for AGN absorbing gas are discussed including an analysis of the ionization parameter distribution in such sources. The need for real calculations of such atomic data is stressed.Comment: 5 pages, 4 figures, accepted by Ap

    Pengukuran Kesenjangan Kinerja Antara Supplier Dengan Customer Pada Rantai Pasokan Jasa Pendidikan Tinggi Menggunakan Metode Servqual

    Full text link
    Performance is the key to measure the quality of service. On the other side an increase in the quality of service is one of the keys to winning the competition.The purpose of this study is measuring the service quality of services at the college using SERVQUAL. SERVQUAL method itself is a method to measure services through five dimensions namely Tangibels, Empathy, Reliability, Responsiveness and Assurance.The results of using SERVQUAL method from 25 variables obtained dimensions that has the biggest gap is Tangibels, Empathy, and Responsiveness

    Milky Way potentials in CDM and MOND. Is the Large Magellanic Cloud on a bound orbit?

    Full text link
    We compute the Milky Way potential in different cold dark matter (CDM) based models, and compare these with the modified Newtonian dynamics (MOND) framework. We calculate the axis ratio of the potential in various models, and find that isopotentials are less spherical in MOND than in CDM potentials. As an application of these models, we predict the escape velocity as a function of the position in the Galaxy. This could be useful in comparing with future data from planned or already-underway kinematic surveys (RAVE, SDSS, SEGUE, SIM, GAIA or the hypervelocity stars survey). In addition, the predicted escape velocity is compared with the recently measured high proper motion velocity of the Large Magellanic Cloud (LMC). To bind the LMC to the Galaxy in a MOND model, while still being compatible with the RAVE-measured local escape speed at the Sun's position, we show that an external field modulus of less than 0.03a00.03 a_0 is needed.Comment: Accepted for publication in MNRAS, 13 pages, 7 figures, 3 table

    Formation of molecular hydrogen on analogues of interstellar dust grains: experiments and modelling

    Full text link
    Molecular hydrogen has an important role in the early stages of star formation as well as in the production of many other molecules that have been detected in the interstellar medium. In this review we show that it is now possible to study the formation of molecular hydrogen in simulated astrophysical environments. Since the formation of molecular hydrogen is believed to take place on dust grains, we show that surface science techniques such as thermal desorption and time-of-flight can be used to measure the recombination efficiency, the kinetics of reaction and the dynamics of desorption. The analysis of the experimental results using rate equations gives useful insight on the mechanisms of reaction and yields values of parameters that are used in theoretical models of interstellar cloud chemistry.Comment: 23 pages, 7 figs. Published in the J. Phys.: Conf. Se

    Nucleation mechanism for the direct graphite-to-diamond phase transition

    Full text link
    Graphite and diamond have comparable free energies, yet forming diamond from graphite is far from easy. In the absence of a catalyst, pressures that are significantly higher than the equilibrium coexistence pressures are required to induce the graphite-to-diamond transition. Furthermore, the formation of the metastable hexagonal polymorph of diamond instead of the more stable cubic diamond is favored at lower temperatures. The concerted mechanism suggested in previous theoretical studies cannot explain these phenomena. Using an ab initio quality neural-network potential we performed a large-scale study of the graphite-to-diamond transition assuming that it occurs via nucleation. The nucleation mechanism accounts for the observed phenomenology and reveals its microscopic origins. We demonstrated that the large lattice distortions that accompany the formation of the diamond nuclei inhibit the phase transition at low pressure and direct it towards the hexagonal diamond phase at higher pressure. The nucleation mechanism proposed in this work is an important step towards a better understanding of structural transformations in a wide range of complex systems such as amorphous carbon and carbon nanomaterials

    Voids in the Large-Scale Structure

    Get PDF
    Voids are the most prominent feature of the LSS of the universe. Still, they have been generally ignored in quantitative analysis of it, essentially due to the lack of an objective tool to identify and quantify the voids. To overcome this, we present the Void-Finder algorithm, a novel tool for objectively quantifying galaxy voids. The algorithm classifies galaxies as either wall- or field-galaxies. Then it identifies voids in the wall-galaxy distribution. Voids are defined as continuous volumes that do not contain any wall-galaxies. The voids must be thicker than an adjustable limit, which is refined in successive iterations. We test the algorithm using Voronoi tessellations. By appropriate scaling of the parameters we apply it to the SSRS2 survey and to the IRAS 1.2 Jy. Both surveys show similar properties: ~50% of the volume is filled by the voids, which have a scale of at least 40 Mpc, and a -0.9 under-density. Faint galaxies populate the voids more than bright ones. These results suggest that both optically and IRAS selected galaxies delineate the same LSS. Comparison with the recovered mass distribution further suggests that the observed voids in the galaxy distribution correspond well to under-dense regions in the mass distribution. This confirms the gravitational origin of the voids.Comment: Submitted to ApJ; 33 pages, aaspp4 LaTeX file, using epsfig and natbib, 1 table, 12 PS figures. Complete gzipped version is available at http://shemesh.fiz.huji.ac.il/hagai/; uuencoded file is available at http://shemesh.fiz.huji.ac.il/papers/ep3.uu or ftp://shemesh.fiz.huji.ac.i

    Honey bee neurogenomic responses to affiliative and agonistic social interactions

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/147835/1/gbb12509-sup-0003-FigureS3.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/147835/2/gbb12509-sup-0002-FigureS2.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/147835/3/gbb12509-sup-0001-FigureS1.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/147835/4/gbb12509.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/147835/5/gbb12509_am.pd
    corecore