418 research outputs found

    The protective and attractive covering of a vegetated embankment using coir geotextiles

    Get PDF
    This paper presents the results of a field experiment conducted in Kerala, South India, to test the effectiveness of coir geotextiles for embankment protection. The results reveal that treatment with geotextile in combination with grass is an effective eco-hydrological measure to protect steep slopes from erosion. In the context of sustainable watershed management, coir is a cheap and locally available material that can be used to strengthen traditional earthen bunds or protect the banks of village ponds from erosion. Particularly in developing countries, where coir is abundantly available and textiles can be produced by small-scale industry, this is an attractive alternative for conventional methods. This paper analyses the performance of coir geotextile in different treatments with respect to soil moisture content, protection against erosion and biomass production

    Regional calibration of the Pitman model for the Okavango River

    Get PDF
    This paper reports on the application of a monthly rainfall-runoff model for the Okavango River Basin. Streamflow is mainly generated in Angola where the Cuito and Cubango rivers arise. They then join and cross the Namibia/Angola border, flowing into the Okavango wetland in Botswana. The model is a modified version of the Pitman model, including more explicit ground and surface water interactions. Significant limitations in access to climatological data, and lack of sufficiently long records of observed flow for the eastern sub-basins represent great challenges to model calibration. The majority of the runoff is generated in the wetter headwater tributaries, while the lower sub-basins are dominated by channel loss processes with very little incremental flow contributions, even during wet years. The western tributaries show significantly higher seasonal variation in flow, compared to the baseflow dominated eastern tributaries: observations that are consistent with their geological differences. The basin was sub-divided into 24 sub-basins, of which 18 have gauging stations at their outlet. Satisfactory simulations were achieved with sub-basin parameter value differences that correspond to the spatial variability in basin physiographic characteristics. The limited length of historical rainfall and river discharge data over Angola precluded the use of a split sample calibration/validation test. However, satellite generated rainfall data, revised to reflect the same frequency characteristics as the historical rainfall data, were used to validate the model against the available downstream flow data during the 1990s. The overall conclusion is that the model, in spite of the limited data access, adequately represents the hydrological response of the basin and that it can be used to assess the impact of future development scenarios

    Assessment of strip tillage systems for maize production in semi-arid Ethiopia: effects on grain yield and water balance

    No full text
    International audienceThe traditional tillage implement, the Maresha plow, and the tillage systems that require repeated and cross plowing have caused poor rainfall partitioning, land degradation and hence low water productivity in Ethiopia. Conservation tillage could alleviate these problems. However, no-till can not be feasible for smallholder farmers in semi-arid regions of Ethiopia because of difficulties in maintaining soil cover due to low rainfall and communal grazing and because of high costs of herbicides. Strip tillage systems may offer a solution. This study was initiated to test strip tillage systems using implements that were modified forms of the Maresha plow, and to evaluate the impacts of the new tillage systems on water balance and grain yields of maize (Zea mays XX). Experiments were conducted in two dry semi arid areas called Melkawoba and Wulinchity, in the central Rift Valley of Ethiopia during 2003?2005. Strip tillage systems that involved cultivating planting lines at a spacing of 0.75 m using the Maresha plow followed by subsoiling along the same lines (STS) and without subsoiling (ST) were compared with the traditional tillage system of 3 to 4 times plowing with the Maresha plow (CONV). Soil moisture was monitored to a depth of 1.8 m using Time Domain Reflectometer while surface runoff was measured using rectangular trough installed at the bottom of each plot. STS resulted in the least surface runoff (Qs=17 mm-season?1), the highest transpiration (T=196 mm-season?1), the highest grain yields (Y=2130 kg-ha?1) and the highest water productivity using total evaporation (WPET=0.67 kg-m?3) followed by ST (Qs=25 mm-season?1, T=178 mm-season?1, Y=1840 kg-ha?1, WPET=0.60 kg-m?3) and CONV (Qs=40 mm-season?1,T=158 mm-season?1, Y=1720 kg-ha?1, WPET=0.58 kg-m?3). However, when the time between the last tillage operation and planting of maize was more than 26 days, the reverse occurred. There was no statistically significant change in soil physical and chemical properties after three years of experimenting with different tillage systems

    Measuring forest floor interception in a beech forest in Luxembourg

    No full text
    International audienceIn hydrological models evaporation from interception is often disregarded, combined with transpiration, or taken as a fixed percentage of rainfall. In general interception is not considered to be a significant process in rainfall-runoff modelling. However, it appears that on average interception can amount to 20?50% of the precipitation. Therefore, knowledge about the process of interception is important. Traditional research on interception mainly focuses on canopy interception and almost completely denies forest floor interception, although this is an important mechanism that precedes infiltration or runoff. Forest floor interception consists partly of interception by dry soil, partly of interception by short vegetation (mosses, grasses and creeping vegetation) and partly of interception by litter. This research concentrates on litter interception: to measure its quantities at point scale and subsequently to upscale it to the scale of a hydrotope. A special measuring device has been developed, which consists of a permeable upper basin filled with forest floor and a watertight lower basin. Both are weighed continuously. The device has been tested in the Huewelerbach catchment (Luxembourg). The preliminary measuring results show that the device is working properly. For November 2004, evaporation from interception is calculated to be 34% of the throughfall in the Huewelerbach catchment

    Experimental study using coir geotextiles in watershed management

    No full text
    International audienceThis paper presents the results of a field experiment conducted in Kerala, South India, to test the effectiveness of coir geotextiles for embankment protection. In the context of sustainable watershed management, coir is a cheap and locally available material that can be used to strengthen traditional earthen bunds or protect the banks of village ponds from erosion. Particularly in developing countries, where coir is abundantly available and textiles can be produced by small-scale industry, this is an attractive alternative for conventional methods

    Seasonal behaviour of tidal damping and residual water level slope in the Yangtze River estuary: identifying the critical position and river discharge for maximum tidal damping

    Get PDF
    As a tide propagates into the estuary, river discharge affects tidal damping, primarily via a friction term, attenuating tidal motion by increasing the quadratic velocity in the numerator, while reducing the effective friction by increasing the water depth in the denominator. For the first time, we demonstrate a third effect of river discharge that may lead to the weakening of the channel convergence (i.e. landward reduction of channel width and/or depth). In this study, monthly averaged tidal water levels (2003ā€“2014) at six gauging stations along the Yangtze River estuary are used to understand the seasonal behaviour of tidal damping and residual water level slope. Observations show that there is a critical value of river discharge, beyond which the tidal damping is reduced with increasing river discharge. This phenomenon is clearly observed in the upstream part of the Yangtze River estuary (between the Maanshan and Wuhu reaches), which suggests an important cumulative effect of residual water level on tideā€“river dynamics. To understand the underlying mechanism, an analytical model has been used to quantify the seasonal behaviour of tideā€“river dynamics and the corresponding residual water level slope under various external forcing conditions. It is shown that a critical position along the estuary.info:eu-repo/semantics/publishedVersio

    HESS Opinions: Are soils overrated in hydrology?

    Get PDF
    Traditional hydrological theories are based on the assumption that soil is key in determining water's fate in the hydrological cycle. According to these theories, soil hydraulic properties determine water movement in both saturated and unsaturated zones, described by matrix flow formulas such as the Darcyā€“Richards equations. They also determine plant-available moisture and thereby control transpiration. Here we argue that these theories are founded on a wrong assumption. Instead, we advocate the reverse: the terrestrial ecosystem manipulates the soil to satisfy specific water management strategies, which are primarily controlled by the ecosystem's reaction to climatic drivers and by prescribed boundary conditions such as topography and lithology. According to this assumption, soil hydraulic properties are an effect rather than a cause of water movement. We further argue that the integrated hydrological behaviour of an ecosystem can be inferred from considerations about ecosystem survival and growth without relying on internal-process descriptions. An important and favourable consequence of this climate- and ecosystem-driven approach is that it provides a physical justification for catchment models that do not rely on soil information and on the complexity associated with the description of soil water dynamics. Another consequence is that modelling water movement in the soil, if required, can benefit from the constraints that are imposed by the embedding ecosystem. Here we illustrate our ecosystem perspective of hydrological processes and the arguments that support it. We suggest that advancing our understanding of ecosystem water management strategies is key to building more realistic hydrological theories and catchment models that are predictive in the context of environmental change.</p

    Spatial rainfall variability and runoff response during an extreme event in a semi-arid catchment in the South Pare Mountains, Tanzania

    Get PDF
    This paper describes an extreme flood event that occurred in the South Pare Mountains in northern Tanzania. A high spatial and temporal resolution data set has been gathered in a previously ungauged catchment. This data was analysed using a multi-method approach, to gather information about the processes that generated the flood event. On 1 March 2006, extreme rainfall occurred in the Makanya catchment, (300 km&lt;sup&gt;2&lt;/sup&gt;), where up to 100 mm were recorded in Bangalala village in only 3 h. The flood was devastating, inundating large parts of the flood plain. The spatial variability of the rainfall during the event was very large, even in areas with the same altitude. The Vudee sub-catchment (25.8 km&lt;sup&gt;2&lt;/sup&gt;) was in the centre of the rainfall event, receiving about 75 mm in 3 h divided over the two upstream tributaries: the Upper-Vudee and Ndolwa. The peak flow at the weir site has been determined using the slope-area method and gradually varied flow calculations, indicating a peak discharge of 32 m&lt;sup&gt;3&lt;/sup&gt; s&lt;sup&gt;&amp;minus;1&lt;/sup&gt;. Rise and fall of the flood was very sharp, with the peak flow occurring just one hour after the peak of the rainfall. The flow receded to 1% of the maximum flow within 24 h. Hydrograph separation using hydrochemical parameters indicates that at the floodpeak 50% of the flow was generated by direct surface runoff (also indicated by the large amount of sediments in the samples), whereas the recession originated from displaced groundwater (&amp;gt;90%). The subsequent base flow in the river remained at 75 l s&lt;sup&gt;&amp;minus;1&lt;/sup&gt; for the rest of the season, which is substantially higher than the normal base flow observed during the previous rainy seasons (15 l s&lt;sup&gt;&amp;minus;1&lt;/sup&gt;) indicating significant groundwater recharge during this extreme event

    Flow Reorganization in an Anthropogenically Modified Tidal Channel Network: An Example From The Southwestern Ganges-Brahmaputra-Meghna Delta

    Get PDF
    We examine variations in discharge exchange between two parallel, 1ā€ to 2ā€kmā€wide tidal channels (the Shibsa and the Pussur) in southwestern Bangladesh over springā€neap, and historical timescales. Our objective is to evaluate how largeā€scale, interconnected tidal channel networks respond to anthropogenic perturbation. The study area spans the boundary between the pristine Sundarbans Reserved Forest, where regular inundation of the intertidal platform maintains the fluvially abandoned delta plain, and the anthropogenically modified region to the north, where earthen embankments sequester large areas of formerly intertidal landscape. Estimates of tidal response to the embankmentā€driven reduction in basin volume, and hence tidal prism, predict a corresponding decrease in size of the mainstem Shibsa channel, yet the Shibsa is widening and locally scouring even as the interconnected Pussur channel faces rapid shoaling. Rather, the Shibsa has maintained or even increased its preā€polder tidal prism by capturing a large portion of the Pussur\u27s basin via several transverse channels that are themselves widening and deepening. We propose that an enhanced tidal setup in the Pussur and the elimination of an effective Shibsaā€Pussur flow barrier are driving this basin capture event. These results illustrate previously unrecognized channel interactions and emphasize the importance of flow reorganization in response to perturbations of interconnected, multichannel tidal networks that characterize several large tidal delta plains worldwide

    Towards affordable 3D physics-based river flow rating: application over the Luangwa River basin

    Get PDF
    Uncrewed aerial vehicles (UAVs), affordable precise global navigation satellite system hardware, multi-beam echo sounders, open-source 3D hydrodynamic modelling software, and freely available satellite data have opened up opportunities for a robust, affordable, physics-based approach to monitoring river flows. Traditional methods of river discharge estimation are based on point measurements, and heterogeneity of the river geometry is not contemplated. In contrast, a UAV-based system which makes use of geotagged images captured and merged through photogrammetry in order to generate a high-resolution digital elevation model (DEM) provides an alternative. This UAV system can capture the spatial variability in the channel shape for the purposes of input to a hydraulic model and hence probably a more accurate flow discharge. In short, the system can be used to produce the river geometry at greater resolution so as to improve the accuracy in discharge estimations. Three-dimensional hydrodynamic modelling offers a framework to establish relationships between river flow and state variables such as width and depth, while satellite images with surface water detection methods or altimetry records can be used to operationally monitor flows through the established rating curve. Uncertainties in the data acquisition may propagate into uncertainties in the relationships found between discharge and state variables. Variations in acquired geometry emanate from the different ground control point (GCP) densities and distributions used during photogrammetry-based terrain reconstruction. In this study, we develop a rating curve using affordable data collection methods and basic principles of physics. The basic principal involves merging a photogrammetry-based dry bathymetry and wet bathymetry measured using an acoustic Doppler current profiler (ADCP). The output is a seamless bathymetry which is fed into the hydraulic model so as to estimate discharge. The impact of uncertainties in the geometry on discharge estimation is investigated. The impact of uncertainties in satellite observation of depth and width is also analysed. The study shows comparable results between the 3D and traditional river rating discharge estimations. The rating curve derived on the basis of 3D hydraulic modelling was within a 95ā€‰% confidence interval of the traditional gauging-based rating curve. The 3D-hydraulic-model-based estimation requires determination of the roughness coefficient within the stable bed and the floodplain using field observation at the end of both the dry and wet season. Furthermore, the study demonstrates that variations in the density of GCPs beyond an optimal number have no significant influence on the resultant rating relationships. Finally, the study observes that which state variable approximation (water level and river width) is more accurate depends on the magnitude of the flow. Combining stage-appropriate proxies (water level when the floodplain is entirely filled and width when the floodplain is filling) in data-limited environments yields more accurate discharge estimations. The study was able to successfully apply advanced UAV and real-time kinematic positioning (RTK) technologies for accurate river monitoring through hydraulic modelling. This system may not be cheaper than in situ monitoring; however, it is notably more affordable than other systems such as crewed aircraft with lidar. In this study the calibration of the hydraulic model is based on surface velocity and the water depth. The validation is based on visual inspection of an RTK-based waterline. In future studies, a larger number of in situ gauge readings may be considered so as to optimize the validation process.</p
    • ā€¦
    corecore