203 research outputs found

    Properties of the quaternary half-metal-type Heusler alloy Co2_2Mn1−x_{1-x}Fex_xSi

    Full text link
    This work reports on the bulk properties of the quaternary Heusler alloy Co2_2Mn1−x_{1-x}Fex_xSi with the Fe concentration x=x=. All samples, which were prepared by arc melting, exhibit L21L2_1 long range order over the complete range of Fe concentration. Structural and magnetic properties of Co2_2Mn1−x_{1-x}Fex_xSi Heusler alloys were investigated by means of X-ray diffraction, high and low temperature magnetometry, M{\"o\ss}bauer spectroscopy, and differential scanning calorimetry. The electronic structure was explored by means of high energy photo emission spectroscopy at about 8 keV photon energy. This ensures true bulk sensitivity of the measurements. The magnetization of the Fe doped Heusler alloys is in agreement with the values of the magnetic moments expected for a Slater-Pauling like behavior of half-metallic ferromagnets. The experimental findings are discussed on the hand of self-consistent calculations of the electronic and magnetic structure. To achieve good agreement with experiment, the calculations indicate that on-site electron-electron correlation must be taken into account, even at low Fe concentration. The present investigation focuses on searching for the quaternary compound where the half-metallic behavior is stable against outside influences. Overall, the results suggest that the best candidate may be found at an iron concentration of about 50%.Comment: 26 pages, 9 figures Phys. Rev. B accepte

    Evidence of surface transport and weak anti-localization in single crystal of Bi2Te2Se topological insulator

    Full text link
    Topological insulators are known to their metallic surface states, a result of strong-spin-orbital coupling, that show unique surface transport phenomenon. But these surface transports are buried in presence of metallic bulk conduction. We synthesized very high quality Bi2_2Te2_2Se single crystals by modified Bridgman method, that possess high bulk resistivity of >>20~Ω\Omegacm below 20~K, whereas the bulk is mostly inactive and surface transport dominates. Temperature dependence resistivity follows the activation law like a gap semiconductor in temperature range 20-300~K. We designed a special measurement geometry, which aims to extract the surface transport from the bulk. This special geometry is applied to measure the resistance and found that Bi2_2Te2_2Se single crystal exhibits a cross over from bulk to surface conduction at 20~K. Simultaneously, the material also shows strong evidence of weak anti-localization in magneto-transport due to the protection against scattering by conducting surface states. This novel simple geometry is an easy route to find the evidence of surface transport in topological insulators, which are the promising materials for future spintronic applications.Comment: 6 Pages, 4 Figure

    Electronic structure and spectroscopy of the quaternary Heusler alloy Co2_2Cr1−x_{1-x}Fex_{x}Al

    Full text link
    Quaternary Heusler alloys Co2_2Cr1−x_{1-x}Fex_{x}Al with varying Cr to Fe ratio xx were investigated experimentally and theoretically. The electronic structure and spectroscopic properties were calculated using the full relativistic Korringa-Kohn-Rostocker method with coherent potential approximation to account for the random distribution of Cr and Fe atoms as well as random disorder. Magnetic effects are included by the use of spin dependent potentials in the local spin density approximation. Magnetic circular dichroism in X-ray absorption was measured at the L2,3L_{2,3} edges of Co, Fe, and Cr of the pure compounds and the x=0.4x=0.4 alloy in order to determine element specific magnetic moments. Calculations and measurements show an increase of the magnetic moments with increasing iron content. Resonant (560eV - 800eV) soft X-ray as well as high resolution - high energy (≥3.5\geq 3.5keV) hard X-ray photo emission was used to probe the density of the occupied states in Co2_2Cr0.6_{0.6}Fe0.4_{0.4}Al.Comment: J.Phys.D_Appl.Phys. accepte

    A p-type Heusler compound: Growth, structure, and properties of epitaxial thin NiYBi films on MgO(100)

    Full text link
    Epitaxial semiconducting NiYBi thin films were directly prepared on MgO(100) substrates by magnetron sputtering. The intensity ratio of the (200) and (400) diffraction peaks, I(200)/I(400) = 2.93, was close to the theoretical value (3.03). The electronic structure of NiYBi was calculated using WIEN2k and a narrow indirect band gap of width 210 meV was found. The valence band spectra of the films obtained by linear dichroism in hard X-ray photoelectron spectroscopy exhibit clear structures that are in good agreement with the calculated band structure of NiYBi

    Investigation on Mn3−δ_{3-\delta}Ga/MgO interface for magnetic tunneling junctions

    Full text link
    The Mn3_3Ga Heusler compound and related alloys are the most promising materials for the realization of spin-transfer-torque switching in magneto tunneling junctions. Improved performance can be achieved by high quality interfaces in these multilayered structured devices. In this context, the interface between Mn1.63_{1.63}Ga and MgO is of particular interest because of its spin polarization properties in tunneling junctions. We performed a chemical characterization of the MgO/Mn1.63_{1.63}Ga junction by hard x-ray photoelectron spectroscopy (HAXPES). The experiment indicated the formation of Ga-O bonds at the interface and evidenced changes in the local environment of Mn atoms in the proximity of the MgO film. In addition, we show that the insertion of a metallic Mg-layer interfacing the MgO and Mn--Ga film strongly suppresses the oxidation of gallium

    Magnetic and structural depth profiles of Heusler alloy Co2FeAl0.5Si0.5 epitaxial films on Si(1 1 1)

    Get PDF
    The depth-resolved chemical structure and magnetic moment of Co2FeAl0.5Si0.5, thin films grown on Si(1 1 1) have been determined using x-ray and polarized neutron reflectometry. Bulk-like magnetization is retained across the majority of the film, but reduced moments are observed within 45ËšA of the surface and in a 25ËšA substrate-interface region. The reduced moment is related to compositional changes due to oxidation and diffusion, which are further quantified by elemental profiling using electron microscopy with electron energy loss spectroscopy. The accuracy of structural and magnetic depth-profiles obtained from simultaneous modeling is discussed using different approaches with different degree of constraints on the parameters. Our approach illustrates the challenges in fitting reflectometry data from these multi-component quaternary Heusler alloy thin films
    • …
    corecore