18 research outputs found

    Development of mucoadhesive sprayable gellan gum fluid gels

    Get PDF
    The nasal mucosa provides a potentially good route for local and systemic drug delivery. However, the protective feature of the nasal cavity make intranasal delivery challenging. The application of mucoadhesive polymers in nasal drug delivery systems enhances the retention of the dosage form in the nasal cavity. Several groups have investigated using low acyl gellan as a drug delivery vehicle but only limited research however, has been performed on high acyl gellan for this purpose, despite its properties being more conducive to mucoadhesion. High acyl gellan produces highly elastic gels below 60 °C which make it difficult to spray using a mechanical spray device. Therefore, in this study we have tried to address this problem by making fluid gels by introducing a shear force during gelation of the gellan polymer. These fluid gel systems contain gelled micro-particles suspended in a solution of un-gelled polymer. These systems can therefore behave as pourable viscoelastic fluids. In this study we have investigated the rheological behavior and mucoadhesion of fluid gels of two different types of gellan (high and low acyl) and fluid gels prepared from blends of high and low acyl gellan at a 50:50 ratio. The results demonstrated that by preparing fluid gels of high acyl gellan, the rheological properties were sufficient to spray through a standard nasal spray device. Moreover fluid gels also significantly enhance both high acyl and low acyl gellan mucoadhesion properties

    Characterization of the Rheological, Mucoadhesive, and Drug Release Properties of Highly Structured Gel Platforms for Intravaginal Drug Delivery

    Get PDF
    This investigation describes the formulation and characterization of rheologically structured vehicles (RSVs) designed for improved drug delivery to the vagina. Interactive, multicomponent, polymeric platforms were manufactured containing hydroxyethylcellulose (HEC, 5 % w/w) polyvinylpyrrolidone (PVP, 4 % w/w), Pluronic (PL, 0 or 10 % w/w), and either polycarbophil (PC, 3 % w/w) or poly(methylvinylether-co-maleic anhydride) (Gantrez S97, 3 % w/w) as a mucoadhesive agent. The rheological (torsional and dynamic), mechanical (com-pressional), and mucoadhesive properties were characterized and shown to be dependent upon the mucoadhesive agent used and the inclusion/exclusion of PL. The dynamic rheological properties of the gel platforms were also assessed following dilution with simulated vaginal fluid (to mimic in vivo dilution). RSVs containing PC were more rheologically structured than comparator formulations containing GAN. This trend was also reflected in formulation hardness, compressibility, consistency, and syringeability. Moreover, formulations containing PL (10% w/w) were more rheologically structured than formulations devoid of PL. Dilution with simulated vaginal fluids significantly decreased rheological structure, although RSVs still retained a highly elastic structure (G ′> G′ ′ and tan δ < 1). Furthermore, RSVs exhibited sustained drug release properties that were shown to be dependent upon their rheological structure. It is considered that these semisolid drug delivery systems may be useful as site-retentive platforms for the sustained delivery of therapeutic agents to the vagina

    In vitro test to evaluate the interaction between synthetic cervical mucus and vaginal formulations

    No full text
    The interaction and mixing between a bilayer sample of mucus and vaginal formulation was evaluated through viscosity measurements with respect to time and shear. Physical mixtures of mucus and vaginal formulation were used as controls. Three test protocols were designed: (1) constant shear, (2) intermittent shear, and (3) delayed shear. Several marketed vaginal products (Gynol II, KY Plus, KY, and Advantage-S) and experimental formulations (C31G with hydroxyethylcellulose [HEC]) were evaluated and compared by these tests. The results of the constant shear test showed that the shear stress profile of the bilayer approached that of the corresponding physical mixture, consistent with complete mixing of the bilayer under shear. The time taken for the bilayer to mix completely was in the following order: KY Plus > Gynol II and C31G > KY > Advantage-S. Under the intermittent shear protocol, the following order for complete mixing was observed: KY Plus > C31G > Gynol II > KY > Advantage-S. The 2 products evaluated by the delayed shear test, C31G and Gynol II, were both completely mixed at 180 minutes. The development of an in vitro test, when coupled with in vivo data, should serve in the screening and evaluation of future vaginal formulations
    corecore