10,685 research outputs found
Multi-period supplier selection under price uncertainty
Cataloged from PDF version of article.We consider a problem faced by a procurement manager who needs to purchase a large volume of multiple items over multiple periods from multiple suppliers that provide base prices and discounts. Discounts are contingent on meeting various conditions on total volume or spend, and some are tied to future realizations of random events that can be mutually verified. We formulate a scenario-based multi-stage stochastic optimization model that allows us to consider random events such as a drop in price because of the most favoured customer clauses, a price change in the spot market or a new discount offer. We propose certainty-equivalent heuristics and evaluate the regret of using them. We use our model for three bidding events of a large manufacturing company. The results show that considering most favored customer clauses in supplier offers may create substantial savings that may surpass the savings from regular discount offers
Highly Transparent, Flexible, and Thermally Stable Superhydrophobic ORMOSIL Aerogel Thin Films
Cataloged from PDF version of article.We report preparation of highly transparent, flexible, and thermally stable superhydrophobic organically modified silica (ORMOSIL) aerogel thin films from colloidal dispersions at ambient conditions. The prepared dispersions are suitable for large area processing with ease of coating and be:ing directly applicable without requiring any pre- or post-treatment on a variety of surfaces including glass, wood, and plastics. ORMOSIL films exhibit and retain superhydrophobic behavior up to 500 degrees C and even on bent flexible substrates. The surface of the films can be converted from superhydrophobic (contact angle of 179.9 degrees) to superhydrophilic (contact angle of <5 degrees) by calcination at high temperatures. The wettability of the coatings can be changed by tuning the calcination temperature and duration. The prepared films also exhibit low refractive index and high porosity making them suitable as multifunctional coatings for many application fields including solar cells, flexible electronics, and lab on papers
Glycosaminoglycan mimetric peptide nanofibers promote mineralization by osteogenic cells
Cataloged from PDF version of article.Bone tissue regeneration is accomplished by concerted regulation of protein-based extracellular matrix components, glycosaminoglycans (GAGs) and inductive growth factors. GAGs constitute a significant portion of the extracellular matrix and have a significant impact on regulating cellular behavior, either directly or through encapsulation and presentation of growth factors to the cells. In this study we utilized a supramolecular peptide nanofiber system that can emulate both the nanofibrous architecture of collagenous extracellular matrix and the major chemical composition found on GAGs. GAGs and collagen mimetic peptide nanofibers were designed and synthesized with sulfonate and carboxylate groups on the peptide scaffold. The GAG mimetic peptide nanofibers interact with bone morphogenetic protein-2 (BMP-2), which is a critical growth factor for osteogenic activity. The GAG mimicking ability of the peptide nanofibers and their interaction with BMP-2 promoted osteogenic activity and mineralization by osteoblastic cells. Alkaline phosphatase activity, Alizarin red staining and energy dispersive X-ray analysis spectroscopy indicated the efficacy of the peptide nanofibers in inducing mineralization. The multifunctional and bioactive microenvironment presented here provides osteoblastic cells with osteogenic stimuli similar to those observed in native bone tissue
Template free preparation of nanoporous organically modified silica thin films on flexible substrates
Cataloged from PDF version of article.We report the preparation and characterization of nanoporous organically modified silica (ormosil) thin films at room temperature and neutral pH conditions from homogeneous methyl silsesquioxane (MSQ) gels. Universally applicable and stable colloidal ormosil suspensions are prepared from the gels by sonication and coated to the substrates including glass, paper and plastics. The nanoporosity and thickness of the films can be tuned, which makes them suitable for certain applications including sensing, functional coatings, and low-dielectric materials. We demonstrate the antireflection property of the films on glass, cellulose acetate (CA) and polyetherimide (PEI) substrates. The films on CA and PEI retain their antireflection property after multiple bending cycles. Furthermore, films are intrinsically hydrophobic, over a wide pH range, with static contact angles up to 143° on paper and 123° on glass and CA. Producing nanoporous ormosil thin films on flexible substrates may expand their use in low cost electronic, optical devices and sensors, and lab-on-paper applications
A Study of Zero-Out Auctions: Testbed Experiments of a Process of Allocating Private Rights to the Use of Public Property
The study examines a proposal to auction rights to land at a major airport and return the
auction revenues to the winners. Experiments with such auctions are reported. New econometric
models of the process are developed and evaluated
Grating coupler integrated photodiodes for plasmon resonance based sensing
Cataloged from PDF version of article.In this work, we demonstrate an integrated sensor combining a grating-coupled plasmon resonance surface with a planar photodiode. Plasmon enhanced transmission is employed as a sensitive refractive index (RI) sensing mechanism. Enhanced transmission of light is monitored via the integrated photodiode by tuning the angle of incidence of a collimated beam near the sharp plasmon resonance condition. Slight changes of the effective refractive index (RI) shift the resonance angle, resulting in a change in the photocurrent. Owing to the planar sensing mechanism, the design permits a high areal density of sensing spots. In the design, absence of holes that facilitate resonant transmission of light, allows an easy-to-implement fabrication procedure and relative insensitivity to fabrication errors. Theoretical and experimental results agree well. An equivalent long-term RI noise of 6.3 x 10(-6) RIU/root Hz is obtained by using an 8 mW He-Ne laser, compared to a shot-noise limited theoretical sensitivity of 5.61 x 10(-9) RIU/root Hz. The device features full benefits of grating-coupled plasmon resonance, such as enhancement of sensitivity for non-zero azimuthal angle of incidence. Further sensitivity enhancement using balanced detection and optimal plasmon coupling conditions are discussed
Bone-Like Mineral Nucleating Peptide Nanofibers Induce Differentiation of Human Mesenchymal Stem Cells into Mature Osteoblasts
Cataloged from PDF version of article.A bone implant should integrate to the tissue through a bone-like mineralized interface, which requires increased osteoblast activity at the implant-tissue boundary. Modification of the implant surface with synthetic bioinstructive cues facilitates on-site differentiation of progenitor stem cells to functional mature osteoblasts and results in subsequent mineralization. Inspired by the bioactive domains of the bone extracellular matrix proteins and the mussel adhesive proteins, we synthesized peptide nanofibers to promote bone-like mineralization on the implant surface. Nanofibers functionalized with osteoinductive collagen I derived Asp-Gly-Glu-Ala (DGEA) peptide sequence provide an advantage in initial adhesion, spreading, and early commitment to osteogenic differentiation for mesenchymal stem cells (hMSCs). In this study, we demonstrated that this early osteogenic commitment, however, does not necessarily guarantee a priority for maturation into functional osteoblasts. Similar to natural biological cascades, early commitment should be further supported with additional signals to provide a long-term effect on differentiation. Here, we showed that peptide nanofibers functionalized with Glu-Glu-Glu (EEE) sequence enhanced mineralization abilities due to osteoinductive properties for late-stage differentiation of hMSCs. Mussel-inspired functionalization not only enables robust immobilization on metal surfaces, but also improves bone-like mineralization under physiologically simulated conditions. The multifunctional osteoinductive peptide nanofiber biointerfaces presented here facilitate osseointegration for long-term clinical stability. © 2014 American Chemical Society
Template-Directed Synthesis of Silica Nanotubes for Explosive Detection
Cataloged from PDF version of article.Fluorescent porous organic-inorganic thin films are of interest of explosive detection because of their vapor phase fluorescence quenching property. In this work, we synthesized fluorescent silica nanotubes using a biomineralization process through self-assembled peptidic nanostructures. We designed and synthesized an amyloid-like peptide self-assembling into nanofibers to be used as a template for silica nanotube formation. The amine groups on the peptide nanofibrous system were used for nucleation of silica nanostructures. Silica nanotubes were used to prepare highly porous surfaces, and they were doped with a fluorescent dye by physical adsorption for explosive sensing. These porous surfaces exhibited fast, sensitive, and highly selective fluorescence quenching against nitro-explosive vapors. The materials developed in this work have vast potential in sensing applications due to enhanced surface area. © 2011 American Chemical Society
Electromagnetic radiative corrections in parity-violating electron-proton scattering
QED radiative corrections have been calculated for leptonic and hadronic
variables in parity-violating elastic ep scattering. For the first time, the
calculation of the asymmetry in the elastic radiative tail is performed without
the peaking-approximation assumption in hadronic variables configuration. A
comparison with the PV-A4 data validates our approach. This method has been
also used to evaluate the radiative corrections to the parity-violating
asymmetry measured in the G0 experiment. The results obtained are here
presented.Comment: 12 pages, 11 figure
Peptide functionalized superparamagnetic iron oxide nanoparticles as MRI contrast agents
Cataloged from PDF version of article.Magnetic resonance imaging (MRI) attracts great attention in cellular and molecular imaging due to its non-invasive and multidimensional tomographic capabilities. Development of new contrast agents is necessary to enhance the MRI signal in tissues of interest. Superparamagnetic iron oxide nanoparticles (SPIONs) are used as contrast agents for signal enhancement as they have revealed extraordinary magnetic properties at the nanometre size and their toxicity level is very low compared to other commercial contrast agents. In this study, we developed a new method to functionalize the surface of SPIONs. Peptide amphiphile molecules are used to coat SPIONs non-covalently to provide water solubility and to enhance biocompatibility. Superparamagnetic properties of the peptide-SPION complexes and their ability as contrast agents are demonstrated. In vitro cell culture experiments reveal that the peptide-SPION complexes are biocompatible and are localized around the cells due to their peptide coating
- …
