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We consider a problem faced by a procurement manager who needs to purchase a large volume of multiple items
over multiple periods from multiple suppliers that provide base prices and discounts. Discounts are contingent on
meeting various conditions on total volume or spend, and some are tied to future realizations of random events that
can be mutually verified. We formulate a scenario-based multi-stage stochastic optimization model that allows us to
consider random events such as a drop in price because of the most favoured customer clauses, a price change in
the spot market or a new discount offer. We propose certainty-equivalent heuristics and evaluate the regret of using
them. We use our model for three bidding events of a large manufacturing company. The results show that con-
sidering most favored customer clauses in supplier offers may create substantial savings that may surpass the
savings from regular discount offers.
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1. Introduction

Procurement is a core strategic function that affects the profit-
ability of a firm, as the cost of goods and services acquired
through procurement typically constitutes a majority of opera-
ting expenses. A fundamental problem in procurement is
supplier selection or sourcing, that is, how to allocate the firm’s
business across suppliers, considering factors such as cost,
quality, responsiveness and risk.
The industry has seen two shifts in supplier selection during

the past two decades. First, with the advent of the Internet,
procurement organizations moved away from manual bidding
processes and negotiations to electronic sourcing. For example,
between 2001 and 2006, Hewlett-Packard increased its total
spend through e-sourcing events to US$30 billion, a 100-fold
increase (Carbone, 2004; Moody, 2006). Electronic sourcing
not only allowed firms to expand their supply pool to more
competition, but also made the supplier selection process faster
and more structured, enabling a simultaneous evaluation and
negotiation of supplier offers. A second shift is an organi-
zational change with which corporations started to procure
centrally to leverage economies of scale of their global
business. For example, Hewlett-Packard combined even its
indirect and services procurement globally and started to use
category-based sourcing to leverage its total spend of $16.5
billion (Avery, 2008). While these two shifts increased the

potential value of the procurement function, they also made the
decisions faced by procurement managers more complex and
challenging. A procurement manager now needs to distribute a
large volume of many items required at multiple locations
across many global suppliers that approach the firm with
various terms and offers.
A complicating feature of this problem is regarding how

the suppliers present their price offers in a procurement
environment. Many suppliers often exhibit economies of
scale and scope in their production activities. Some others
have growth and market share targets for a specific group of
items. Suppliers express these internal efficiencies and pres-
sures by offering discounts to the buyer. These offers are
usually complex and are contingent on meeting various
conditions on total available market, volume or spend for a
single item or a set of items, and the discounts may be
applicable to the same or a different set of items.
It is not possible to incorporate these complex discount offers

into a simple reverse auction. Ignoring these (potential) offers
and selecting the lowest bidding supplier for each item or lot
would lead to inefficiencies. We have recently seen efforts to
develop tools that would enable suppliers to express these offers
and buyers to evaluate them. The success of the software tool
CombineNet is described in Sandholm (2007). Between 2001
and 2006, 447 bidding events are administered totalling a spend
of $35 billion. It is believed that CombineNet delivered savings
of $4.4 billion in these events. Bichler et al (2011) proposed a
bidding language and an optimization model to express and
evaluate more complex offers.
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Both of these efforts and many other research in this area
assume that the important parameters of the problem are
perfectly known in advance. However, procurement environ-
ments are replete with uncertainties. A primary uncertainty is in
the volume that needs to be procured. Since the demand for
end-products is often volatile, it is also very hard to predict the
amounts of goods and services that need to be procured to make
them. For example, global shipments of personal computers
declined in the first quarter of 2011, by 3.2% according to an
estimate by International Data Corp. and by 1.1% according to
an another estimate by Gartner Inc., while both tracking firms
previously predicted an increase (Sherr, 2011).
Another important uncertainty is in the prices of components

that need to be procured. For example, prices of many com-
ponents that are used in personal computers fluctuate heavily
and these shifts in prices are also very hard to predict. The price
of the DRAM memory that Hewlett-Packard uses dropped by
over 90% in 2001, and then more than tripled in early 2002
(Nagali et al, 2008). Supplier offers usually state a commitment
to base prices and discounts that will be given if certain con-
ditions are met. However, price uncertainty in the market may
still have an impact on how a procurement manager would
evaluate such offers through a number of ways. First, if the
procurement is through a contracted supplier, the future prices
of this supplier to other customers may have an impact on an
existing contract based on certain clauses. These clauses usually
refer to what is known as a most-favored-customer (MFC)
status. A customer who obtains a MFC status from a company
is guaranteed to receive the best price the company gives to
anyone. If the supplier lowers price to someone else, then the
customer’s price will be lowered to match. In some cases,
a customer may need to purchase a minimum volume of a set
of items over a specified time period to obtain this status. In
other cases, the customer (such as a government agency) may
demand MFC status for any contract without any condition.
Lowest prices can be verified and contract compliance can be
ensured through third-party audits.
MFC clauses are commonly used in procurement contracts in

many industries. For example, a contract (Sample Business
Contracts, 2012) between Cisco Systems Inc. and one of its
suppliers, Frontier Software Development Inc., stipulates ‘Fron-
tier represents and warrants to Cisco that the product prices/
license fees offered to Cisco under this agreement are no less
favorable than the product prices/license fees offered to any
other party purchasing or licensing similar quantities. In the
event, Frontier offers more favorable product prices/license fees
to any other party. Frontier will promptly notify Cisco of such
event and offer such more favorable product prices/license fees
to Cisco. Commencing upon the date, such more favorable
product prices/license fees were offered to the other party’.
As an example of a contract that guarantees a govern-

ment agency to purchase at the lowest price, we note the
following price reductions clause stated in a contract between
Hewlett-Packard and US Department of Defense (DoD-ESI,
2012): ‘The prices under this BPA (blanket purchase

agreement) shall be at least as low as the prices that the
contractor has under any other contract instrument under like
terms and conditions. If at any time the prices under any other
contract instrument become lower than the prices in this BPA,
this BPA will be modified to include the lower prices’. Govern-
ments usually enforce the compliance to these clauses strictly. In
a recent settlement, Oracle accepted to pay the US government
$199.5 million after a file suit claiming that the company was not
providing the government discounts that were as deep as some
other customers were receiving (Montalbano, 2011).
Another contract clause that price uncertainty can affect is

what is called meet-the-competition-clause (MCC). An MCC
clause (sometimes also referred to as meet-or-release clause) in
a procurement contract gives the seller an option to retain the
customer’s business by matching any lower price offer that may
be coming in the future. A third contract type that may lead to
uncertainty in price is price indexing. In this case, the contract
price of a product is indexed to the price of a commodity or
an official price index (such as consumer price index). For
example, in the United Kingdom, 85% of natural gas is sold
under long-term contracts in which prices are indexed to the
spot market (Neumann and von Hirschhausen, 2004). Uncer-
tainty in the commodity prices or price index obviously
creates uncertainty on the prices that the seller would charge to
the buyer. Finally, if some of the products under considera-
tion are commodity-like products and can also be procured
from the spot market, an uncertainty in spot prices has a clear
and direct effect on how much the manager should procure
from the spot market or using a fixed-price contract now and in
the future.
In this study, we develop a model that incorporates price

uncertainty to the supplier selection problem when the suppliers
offer complex discount offers. The formal problem we consider
may be stated as follows. A buyer needs to purchase a large
volume of multiple items over a planning horizon (a quarter or
a year) that consists of multiple periods (months). The demand
for each item can be different in each period, but is known.
There are multiple suppliers that are qualified to offer all or
a portion of the items in consideration. Each supplier provides a
base price for each offered item. In addition, suppliers propose
various discount offers to the buyer that are contingent on
meeting various conditions on a single item or a group of items,
over a single period or multiple periods. An offer may provide
per unit discounts that can be applied to a single item or a group
of items, over a single period or multiple periods, and on all
units purchased (all-units discount) or units purchased above
a threshold (incremental discounts). Alternatively, an offer may
provide the buyer a lump sum. Some of these offers may be tied
to realization of random events in the future that can be
mutually verified. The buyer’s problem is to select suppliers
and determine the amount of each item to be procured from
each supplier in each period of the planning horizon to
minimize its expected procurement and inventory holding costs
while satisfying item demands in each period. There could also
be capacity constraints that limit how much the buyer can
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procure from a supplier. In addition, the buyer may also enforce
certain side constraints (eg, enforce a minimum and maximum
number of suppliers for each item) to properly manage other
procurement risks. While the procurement decisions for the first
period are executed immediately, the decisions in the latter
periods will be contingent on the realization of random events
in those periods (ie, recourses).
We formulate the buyer’s problem as a multi-stage stochastic

mixed-integer programme using a scenario tree. To the best
of our knowledge, this is the first model for the supplier
selection problem that simultaneously considers uncertainty
and discount offers of combinatorial nature. This is also one
of the first multi-period models and allows the buyer to consider
discount rules defined over multiple periods and carry inventory
from one period to another to be eligible for a favourable
discount. The formulation is also very general in two aspects.
First, we can represent a variety of random events that have
direct or indirect effects on the discounts that the buyer gets
from the suppliers. Second, we can represent many diffe-
rent forms of supplier offers with very complex conditions and
discounts. For example, the model supports the separation of
items (periods) for which the conditions are imposed and items
(periods) on which the discounts apply, pricing with multiple
price breaks and incremental or all-units discounts.
We also suggest two certainty-equivalent heuristics that

can be used for this problem. In both of these heuristics,
a deterministic version of the problem is solved by setting the
prices in later periods to their expected values. The static
heuristic solves the problem only once at the beginning of
the horizon and does not respond to the actual realizations
of events in the later periods. The dynamic heuristic, on the
other hand, resolves the problem at each period. We show
how to compute the performance of these heuristics by using
our stochastic formulation.
Our work is motivated by our experience with a major

manufacturing company that conducts quarterly bidding events
to select suppliers for its global demand for various compo-
nents. In all of these procurement events, suppliers’ bids include
various volume discounts in addition to base prices for each
component. Some of these discount offers are very complex in
nature and are contingent on meeting multiple conditions on
multiple items. Furthermore, some of the suppliers offer con-
tracts with MFC terms that guarantee the lowest price provided
that the manufacturing company procures enough volume from
them. We used our multi-stage stochastic programming model
to evaluate MFC status benefits and regular discount offers for
three bidding events that took place in 2010. The results of this
preliminary study show that considering MFC terms in addition
to the regular discount offers may lead to substantial savings.
In some of the events, the incremental savings by taking MFC
terms into account may be larger than the savings that can
be obtained by only evaluating regular discount offers. The
results also show that the price certainty-equivalent heuristics,
the static version in particular, fail to capture the benefits of
MFC terms in contracts.

The rest of the paper is organized as follows. In Section 2,
we analyse a single-item, two-period problem with two
suppliers to gain insight into the trade-offs. In Section 3, we
review the literature on supplier selection problem. In Section 4,
we present our model. In Section 5, we propose the two
certainty-equivalent heuristics. In Section 6, we discuss the
implementation of our model at a major manufacturing com-
pany and analyse the effects of various model elements and
parameters on the benefits of considering MFC terms. We
conclude in Section 7.

2. A motivating example

In order to explain the basic trade-offs in evaluating discount
offers under uncertainty, and to show the need to use a formal
stochastic model to support decision making in this context, we
provide the following stylized example.
A company needs to procure an item over a two-period

horizon. The demands in the first and second periods are δ1 and
δ2, respectively. There are two suppliers that offer this item.
Supplier a charges μa per unit and offers a most favoured
customer clause in the contract. Under this contract, if the
firm procures 100m percent of its demand from supplier a in
Period 1, it will benefit from any possible reduction in price (to
other customers) in Period 2. The price per unit will be reduced
by πa with a probability γ and will remain constant with
probability 1− γ. Supplier b charges μb per unit and offers a
volume discount contract. Under this contract, if the firm
procures a total of ρ in two periods from supplier b, it will
receive a discount of πb per unit. We assume that

δ1 + δ2 ⩾ ρ>ð1 -mÞδ1 + δ2:

That is, (i) the firm can always qualify for a volume discount
from supplier b by buying enough; and (ii) the firm cannot
qualify for the volume discount offer from supplier b and buy
enough from supplier a to benefit from a possible price drop at
the same time. We also assume that

μb< μa< μb - πb + πa;

that is, firm will choose supplier a over b if MFC clause in
supplier a is used, and supplier b over supplier a, otherwise. If
the firm buys enough from supplier a to benefit from a potential
price drop, its expected cost will be

Φa
0 ¼ μamδ1 + μbð1 -mÞδ1 + γðμa - πaÞδ2 + ð1 - γÞμbδ2:

On the other hand, if the firm chooses to use supplier b and
benefit from the volume discount offer, its cost will be

Φb ¼ ðμb - πbÞðδ1 + δ2Þ:
The firm will opt for supplier a’s MFC clause (Φa

0<Φ
b) if and

only if

γ > γ0 ¼
πbðδ1 + δ2Þ + ðμa - μbÞmδ1

ðπa + μb - μaÞδ2
:
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An alternative to using the stochastic formulation is to use
a certainty-equivalent argument and assume that supplier
a’s second period price will be the expected price μa− γπa.
In this case, we can write firm’s cost if it chooses to use the
MFC clause as

Φa
1 ¼ μamδ1 + μbð1 -mÞδ1 + ðμa - γπaÞδ2:

Hence, the firm will opt for supplier a’s MFC clause (Φa
1<Φ

b)
if and only if

γ > γ1 ¼
πbðδ1 + δ2Þ + ðμa - μbÞmδ1 + ðμa - μbÞδ2

πaδ2
:

Denoting α= πb(δ1 + δ2) + (μa−μb)mδ1, β= (πa+μa−μb)δ2 and
λ= (μa− μb)δ2, we have γ0=α/β and γ1= (α+ λ)/(β+ λ). It is
then easy to see that γ0 is strictly smaller than γ1 if and only if
γ0< 1, that is, unless it is never optimal for the firm to consider
the supplier a, which offers the MFC clause. In this case for
γ0< γ ⩽ γ1, the firm’s optimal action is to procure mδ1 from
supplier a in Period 1. However, this action will not be taken if
a certainty-equivalent approach is used. In general, the deci-
sions taken using a certainty-equivalent approach would be
different from optimal decisions (using stochastic formulations)
and therefore lead to expected costs that are higher than
optimal.

3. Literature review

The impact of quantity discounts on replenishment and pro-
curement decisions of a company is well studied in the
operations management literature (Munson and Rosenblatt,
1998). Most of the basic textbooks in this area include a section
on extensions of the economic order quantity (EOQ) model
that consider quantity discounts (eg, Silver et al, 1998, §5.5).
Another line of research focuses on sourcing, that is, how a
company should select and allocate its spend to different
suppliers based on different factors such as cost, quality, lead
time and reliability (Chopra and Meindl, 2013, §13).
While the extensions of the EOQ model for the case of

quantity discounts and single-item, single-supplier problems are
usually tractable, the problem becomes difficult, even for the
case of a single item when there are multiple suppliers whose
prices are functions of the quantity purchased. For example,
consider a buyer who needs to purchase a predetermined
amount of a single item from a set of suppliers. Each supplier
offers a certain price, but the price is valid only if the quantity
purchased is in a specific interval, reflecting the cost and
capacity structure of the supplier. Chauhan et al (2005) show
that the problem is NP-hard.
For reviews on the supplier selection problem, we refer the

reader to Benton and Park (1996), Munson and Rosenblatt
(1998) and Aissaoui et al (2007). Here we summarize some
examples on different variants of the problem.
Most studies on supplier selection for multiple items consider

single-period problems. Goossens et al (2007) study the
problem of deciding on purchase quantities for multiple items

from multiple suppliers that offer total quantity discounts based
on total purchase quantities. The authors prove that this problem
is NP-hard even for some specific discount structures. They
present a Mixed-Integer Linear Programming (MILP) model
and a branch-and-bound procedure based on a minimum cost
network flow problem reformulation of the continuous relaxa-
tion. They extend their results to variants of the problem with
market share constraints, limited number of winning suppliers
and multiple periods. Manerba and Mansini (2012) study the
same problem under capacity constraints and present new valid
inequalities. They propose a branch-and-cut algorithm and a
hybrid heuristic to provide an initial feasible solution to the
exact approach. Qin et al (2012) study a distribution planning
problem where shipping companies offer total quantity dis-
counts. Crama et al (2004) consider the supplier selection
problem with alternative product recipes and Mansini et al
(2012) incorporate transportation costs. A different setting
where suppliers offer their products in bundles is studied by
Murthy et al (2004). In this problem, decisions regarding the
purchase quantities for different items are related not only
through bundles but also through fixed costs of buying from
suppliers. A Lagrangian relaxation-based heuristic is proposed
to solve this problem. Sadrian and Yoon (1994) and Katz et al
(1994) present MILP formulations for the problem in the
presence of business volume discounts. Bichler et al (2011)
introduce a comprehensive bidding language that allows for
elaborate discount structures. Total quantity and incremental
quantity discounts, as well as lump sum discounts and markups,
with conditions on spend or purchase quantities can be
expressed with this bidding language. The authors present a
MILP model to solve the supplier selection problem and report
the results of their experiments in solving the model under
different scenarios.
There are few studies on the supplier selection problem with

multiple periods and dynamic demand. Tempelmeier (2002)
presents formulations and a heuristic solution approach for the
single-item problem with both total quantity discounts and
incremental discounts. Moreover, van de Klundert et al (2005)
study the problem of selecting telecommunications carriers
under total quantity discounts. The discounts are given based
on the total call minutes over the planning horizon; however,
lower and upper bounds are imposed on call minutes per period
routed via each carrier.
The multi-item problem with dynamic demand is studied by

Stadtler (2007). Different from our study, discount rules involve
a single item, and decisions concerning different items depend on
a fixed cost of buying from suppliers. Xu et al (2000) study the
single supplier problem in the presence of business volume
discounts and setup costs. Rong et al (2012) study an interesting
multi-item problem where the discounts are due to ordering in
standard batches (eg, full pallets) and the buyer needs to determine
the procurement strategy for each item to minimize procurement,
transportation, inventory and material handling costs.
Most research on supplier selection problems with discount

offers assume a deterministic setting. When the demand is
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stochastic, existence of a contract with volume discounts
entangles the inventory decisions of a buyer. For example, see
Bassok and Anupindi (1997) who analyse a supply contract
of a single product in which the cumulative orders over multiple
periods should be larger than a prespecified quantity in order to
qualify for a discount. The authors extend their work (Anupindi
and Bassok, 1998) to the case of multiple products with
business volume discounts.
The present study extends the literature on multi-item

problems with multiple suppliers and dynamic demand by
considering very general discount rules and price uncertainty.

4. The multi-stage stochastic programming model

A firm (buyer) needs to procure a set of items I over a set of
periods T . For each item i 2 I and period t 2 T , the firm has
to satisfy a demand denoted by δit (a deterministic quantity)
without a backlog. The firm works with a set of suppliers N .
For each item i, there is a subset of suppliers N i � N that are
qualified. Supplier j in N i charges a unit price μijt and has a
capacity κijt for item i in period t. The firm can also carry
inventory from period t to period t+1 incurring an inventory
holding cost of ηit for each unit of item i’s ending inventory in
period t.
A set of discount rules D and a set of lump sum rebate rules

L are available. These rules involve a set of conditions C on
order quantities. The quantity ρc is the minimum order quantity
that the firm needs to purchase from items in set I c�I over
periods T c�T for condition c 2 C to be satisfied. Let ε be the
set of conflicting pairs of rules.
We defineR ¼ D∪L. The buyer can benefit from the rule r

offered by supplier jðrÞ 2 N if it satisfies the conditions Cr � C
and if it does not benefit from any other rule in Rr � R. If
r 2 L, then a lump sum rebate of ωr is offered. If r 2 D, the
supplier provides a set of discounts Kr. The discount k 2 Kr

reduces the price by πk per unit for items in the set I k � I
purchased over periods T k � T exceeding the quantity θk
(I k1 \I k2 ¼ ; for all k1; k2 2 Kr; k1 ≠ k2).
Let V be the set of nodes of the scenario tree with node 0

corresponding to the root and V t be the set of nodes in layer
t 2 T . For a given node s 2 V, let τ(s) be its layer, a(s) be its
predecessor in the scenario tree, Ps be the set of nodes on the
path from the root to node s and γs be its probability. We define
the rules at the terminal nodes. Let Rs be the set of discount
rules available at node s. DefineDs ¼ D\Rs and Ls ¼ L\Rs.
Let Es be the set of pairs of conflicting rules at node s, that is,
Es ¼ E\ðRs ´RsÞ.
We show the construction of the scenario tree for the

example problem discussed in Section 1 in Figure 1.
Here, N ¼ fa; bg; T ¼ f1; 2g; I ¼ f1g, V ¼ f0; 1; 2g;
að1Þ ¼ að2Þ ¼ 0, τ(0)=1, τ(1)= τ(2)= 2. Supplier a offers the
discount rule r1. The discount rule r1 is available only at node 2
(if supplier a lowers its price to other customers) contingent
on conditions in set Cr1 ¼ fc1g. Condition c1 states that the

volume of products I c1 ¼ f1g in periods T c1 ¼ f1g purchased
from supplier a exceeds ρc1 ¼ mδ1. Rule r1 allows discounts in
the setKr1 ¼ fk1g. Discount k1 provides a discount of πk1 ¼ πa
per unit for products I k1 ¼ f1g bought in quantity above
θk1 ¼ 0 in periods T k1 ¼ f2g. Supplier b offers the discount
rule r2. The discount rule r2 is available in nodes 1 and 2 and is
contingent on conditions in set Cr2 ¼ fc2g. Condition c2 states
that the volume of products I c2 ¼ f1g in periods T c2 ¼ f1; 2g
purchased from supplier b exceeds ρc2 ¼ ρ. Rule r2 allows
discounts in the set Kr2 ¼ fk2g. Discount k2 provides a
discount of πk2 ¼ πb per unit for products I k2 ¼ f1g bought
in quantity above θk2 ¼ 0 in periods T k2 ¼ f1; 2g.
At the beginning of horizon, the orders are placed for the first

period. Recourse actions are taken at the beginning of each
other period based on actual realizations. We define the
following decision variables. The quantity xijs is the order
quantity for item i 2 I and supplier j 2 N i at node s 2 V. Iis
stands for the ending inventory for item i 2 I at node s 2 V.
The binary variable zsr takes value 1 if rule r 2 Rs applies at
node s 2 V and takes value 0 otherwise. Finally, ysk is the total
amount of units of items in the set I k that are discounted with
discount k 2 Kr as a part of rule r 2 Ds at node s 2 V, that is,
ysk ¼

P
i2I k

P
ŝ2Ps:τð̂sÞ2T k

xijðrÞ̂s - θk
� � +

zsr. Now we can model
our problem as follows:

min
X
s2V

γs
X
i2I

X
j2N i

μijτðsÞxijs +
X
i2I

ηiτðsÞIis -
X
r2Ds

X
k2Kr

πky
s
k -
X
r2Ls

ωrz
s
r

0
@

1
A
(1)

s:t: Iis ¼ IiaðsÞ +
X
j2N i

xijs - δiτðsÞ 8i 2 I ; s 2 V; (2)

xijs ⩽ κijτðsÞ 8i 2 I ; j 2 N i; s 2 V; (3)

X
i2I c

X
ŝ2Ps:τð̂sÞ2T c

xijðrÞŝ ⩾ ρcz
s
r 8s 2 V; r 2 Rs; c 2 Cr; (4)

ysk ⩽
X
i2I k

X
ŝ2Ps:τðŝÞ2T k

xijðrÞ̂s - θkzsr

8s 2 V; r 2 Ds; k 2 Kr;

(5)

Figure 1 Scenario tree for the example problem of Section 2.
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ysk ⩽
X
i2I k

X
t2T k

κijðrÞt - θk

 !
zsr 8s 2 V; r 2 Ds; k 2 Kr; (6)

zsr + z
s
r0 ⩽ 1 8s 2 V; fr; r0g 2 Es; (7)

xijs ⩾ 0 8i 2 I ; j 2 N i; s 2 V; (8)

Iis ⩾ 0 8i 2 I ; s 2 V; (9)

zsr 2 f0; 1g 8s 2 V; r 2 Rs; (10)

ysk ⩾ 0 8s 2 V; r 2 Ds; k 2 Kr: (11)

The objective function (1) is equal to the expected total cost.
Constraints (2) are inventory balance equations. The capacities
of suppliers are respected due to constraints (3). Constraints (4)
impose the minimum order quantity conditions for the rules.
Conditions on minimum spend can be modelled similarly.
Constraints (5), (6) and (11) compute the amount of discounted
units (we assume that

P
i2I k

P
ŝ2Ps:τð̂sÞ2T k

xijðrÞ̂s ⩾ θk is
implied by the conditions for discount rule r and discount
k 2 Kr). If, in scenario s∈ S, discount rule r 2 Ds applies, then
constraints (6) is redundant and the maximum of 0 and the
right hand side of constraint (5) is equal to the amount of
discounted units. If this rule does not apply, then constraint (5)
is redundant and constraints (6) and (11) force yskr to 0. Finally,
constraints (7) ensure that conflicting rules do not apply at the
same time.
The formulation can be strengthened by replacing conflict

constraints (7) with inequalities corresponding to cliques in the
conflict graph Gs ¼ ðRs; EsÞ. In some cases, the same informa-
tion can be used to strengthen constraints (4). We sketch this
with a very simple example. Suppose that we consider a single
period problem where Supplier 1 offers total quantity discounts
for Item 1. The unit price reduces by a factor for every 1000
items purchased and the capacity is 4000. To handle this
discount, we define four discount rules r∈ {1, …, 4}, each
with a single condition. We replace constraint (4) with
x110 ⩾

P4
r¼ 1 1000rz

0
r and use the clique inequality

P4
r¼ 1 z

0
r ⩽ 1.

The MILP formulation given in (1–11) can be used to model
various forms of regular discount offers and other discounts that
are contingent on the realization of random events. We discuss
some of these here. First, traditional quantity discounts schemes
can be easily modelled. Consider, for example, an incremental
discount rule r that requires condition c and applies a discount k.
The condition and discount are applied on the same item set and
same period set, that is, I c ¼ I k and T c ¼ T k. Thresholds are
then also set to be the same, that is, ρc= θk. The rule is defined
in all terminal nodes. Multiple price breaks can be modelled
using multiple rules that are disjoint. An all-units discount rule
can be modelled similarly, except that now we set θk= 0. One
can also separate the periods (items) for which the conditions
are imposed and the periods (items) for which the discounts are
applied on.

In addition to MFC terms that are explained by an example
in Figure 1, various other uncertainties can be modelled. For the
case of index pricing, various scenarios can be created for
the value of the index in the later periods. For each scenario, we
define a discount rule that provides a discount in the amount
of price difference without a condition. One can also model
spot price uncertainty by defining a dummy supplier for spot
purchases and creating a scenario for each possible price
change in the spot market. We can then define a discount rule
for every terminal node whose path from the root node has
a price change. These rules will also have no conditions and
will provide a discount in the amount of price change for
all units purchased in periods after the price change took place.
Finally, any potential regular discount offer in the future
(eg, if the buyer thinks that there is a chance that one of the
suppliers will offer a new discount in the middle of the plann-
ing horizon) can be easily incorporated in the model pro-
vided that the conditions and discounts can be properly
estimated.

5. Heuristics

A usual approach in practice to solve problems under uncer-
tainty is to use certainty-equivalent heuristics. These heuri-
stics solve a deterministic version of the problem in which
the random elements are replaced by their average values. The
same approach can also be used for our problem. For example,
for the case of a possible price drop in a given future period
that the buyer will also benefit owing to MFC clauses in the
contract, one can set the discount amount to be equal to the
difference between the current price and the expected price in
that period. Note that to be eligible for this discount, the buyer
still has to abide by the rules of obtaining MFC status. For
the case of spot price uncertainty, one can use the expected
spot price in each period as the price for that period in the
deterministic formulation. For the case of index pricing, one
can index the product prices to the expected price of the
commodity or index.
We consider two versions of the certainty-equivalent heur-

istic. In the first version, certainty-equivalent deterministic
problem is solved only once at the beginning of the planning
horizon and the decisions are never changed. In the second
version, the deterministic problem is re-solved at the beginning
of each period after random events for that period are observed.
We next explain how one can compute the solution and obtain
the expected cost for each heuristic.

5.1. Static certainty-equivalent (SCE) heuristic

In this heuristic, the problem is solved only once at the
beginning of the horizon (at node 0) and the solution is
followed, regardless of the actual realizations of the random
events throughout the planning horizon. In order to compute the
solution for the certainty-equivalent heuristic, one can solve the
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following mathematical programme.

min
X
i2I

X
j2N i

X
t2T

μijtxijt +
X
i2I

X
t2T

ηitIit -
X
r2D

X
k2Kr

π0kyk -
X
r2L

ω0
r zr

(12)

s:t: Iit ¼ Ii; t - 1 +
X
j2N i

xijt - δit 8i 2 I ; t 2 T ; (13)

xijt ⩽ κijt 8i 2 I ; j 2 N i; t 2 T ; (14)X
i2I c

X
t2T c

xijðrÞt ⩾ ρczr 8r 2 R; c 2 Cr; (15)

yk ⩽
X
i2I k

X
t2T k

xijðrÞt - θkzr 8r 2 D; k 2 Kr; (16)

yk⩽
X
i2I k

X
t2T k

κijðrÞt - θk

 !
zr 8r 2 D; k 2 Kr; (17)

zr + zr0⩽1 8fr; r0g 2 E; (18)

xijt ⩾ 0 8i 2 I ; j 2 N i; t 2 T ; (19)

Iit ⩾ 0 8i 2 I ; t 2 T ; (20)

zr 2 f0; 1g 8r 2 R; (21)

yk ⩾ 0 8r 2 D; k 2 Kr: (22)

Note that the formulation above is the same as the model in
(1–11), except that the scenarios are removed. In this formula-
tion, xijt is the order quantity for item i from supplier j in period t
and Iit is the ending inventory for item i in period t. The binary
variable zr takes value 1 if rule r 2 R applies and takes value 0
otherwise. The variable yk is the total amount of items in the set
I k that are discounted with discount k 2 Kr as a part of rule
r 2 D. The only parameters that are different from the model in
(1–11) are π0k , which stands for the expected value of the
discount given by the discount k and ω0

r , which stands for the
expected lump sum discount given by the rule r. Both of these
expectations are taken at node 0 (unconditional expectation).
Let x0ijt be the optimal order quantity for item i from supplier j

in period t obtained by solving (12–22) (superscript 0 is used to
denote that this is the certainty-equivalent solution obtained at
node 0). Note that the optimal value of the model in (12–22) is
not the true expected value obtained by following the ordering
decisions obtained by solving (12–22). To calculate the
expected cost of the certainty-equivalent heuristic, we need to
reinstate the scenarios and solve the following mathematical
programme.

min
X
s2V

γs
X
i2I

X
j2N i

μijτðsÞxijs +
X
i2I

ηiτðsÞIis -
X
r2Ds

X
k2Kr

πky
s
k -
X
r2Ls

ωrz
s
r

0
@

1
A

s:t: ð2 - 11Þ;

xijs ¼ x0ijτðsÞ 8s 2 V; i 2 I ; j 2 N i:

5.2. Dynamic certainty-equivalent (DCE) heuristic

In this heuristic, the problem is re-solved at the beginning of
each period to account for realizations of all random events and
prior decisions until that node. At node 0, we solve the same
model given in (12–22). We then need to re-solve the problem
at every node (going layer by layer) as well. At node s, we need
to solve the following mathematical programme.

min
X
i2I

X
j2N i

X
t2T

μij txijt +
X
i2I

X
t2T

ηitIit

-
X
r2D

X
k2Kr

πskyk -
X
r2L

ωs
rzr ð23Þ

s:t: ð13- 22Þ;

xijτð̂sÞ ¼ xŝiĵs 8ŝ 2 Ps; i 2 I ; j 2 N i: (24)

The last set of constraints enforces that the order quantity
decisions taken before node s (nodes in the path from node 0 to
node s, Ps) are followed. Note also that we use πsk for the
expected discount given by discount k and ωs

r for the expected
lump sum amount given by rule r. These reflect the fact that
expectations are taken at node s (conditioning on the fact that
we are already at node s). If a discount or a rule depends only on
random events that materialize in time periods before and at
node s (t⩽ τ(s)), this means that we know these parameters with
certainty at node s.
Let xsijt be the optimal order quantity for item i from supplier j

in period t obtained by solving model (23, 13–22, 24) at node s.
In order to compute the expected cost of the DCE heuristic, we
need to solve the following programme.

min
X
s2V

γs
X
i2I

X
j2N i

μijτðsÞxijs +
X
i2I

ηiτðsÞIis -
X
r2Ds

X
k2Kr

πky
s
k -
X
r2Ls

ωrz
s
r

0
@

1
A

s:t: ð2 - 11Þ;
xijs ¼ xsijτðsÞ 8s 2 V; i 2 I ; j 2 N i:

The last constraint enforces that order quantity decisions at
each node are taken according to the solution of the certainty-
equivalent model at that node.

6. Application

We apply our model in a preliminary study at a major
manufacturing company. The company needs to procure var-
ious components that are used in the assembly of a large
number of end-products in various manufacturing sites across
the globe. Sourcing decisions are usually taken quarterly by
holding bidding events. We test our model and the implications
of its use in three bidding events that took place in 2010.
These events are held for 40–45 items (components) and
involve 3–5 suppliers. For most of the items, there are two or
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more suppliers that are competing for the buyer’s business.
Each supplier provides a base price for each offered item. In
addition, suppliers also offer discounts that reflect their econo-
mies of scale in costs and market share targets. Each discount
offer requires a minimum volume or a minimum spend on an
item or a group of items and provides a discount on a set of
items (which can be different from the set that the conditions are
imposed on). The discounts are either incremental or all-units
discounts.
In addition to these usual discount offers, at least one supplier

in each bidding event provides most favoured customer benefits
in its offers. If the supplier offering the MFC clause reduces the
price in the middle of the quarter to other customers, it would
extend the price reduction to the buyer in consideration as well if
the buyer has already procured a minimum fraction of its demand
(for this item or a group of items) from the supplier until that
time. In order to model these possible discounts, we split the
quarter into two periods and created scenarios to represent
possible price reductions in items for which MFC clauses apply.
All MILPs in this section were implemented and solved

using Gurobi (2012) version 5.0 on a notebook computer that
has an Intel Dual-Core i7 6.20 GHz processor, 4 GB memory
and aWindows 7 operating system. For all problems in our case
study, the solution times were less than 2 seconds.
Table 1 summarizes our tests for these three bidding events.

The buyer gets price and discount offers from the suppliers in
two rounds. The suppliers submit initial bids in round 1 and
revise them after getting some feedback from the buyer’s
procurement organization. We represent each round separately
in Table 1 (ia and ib stand for the first and second round offers
for bidding event i, respectively). Our baseline for each event
disregards all discounts offers (regular and MFC clauses). This
corresponds to selecting the supplier that offers the minimum
base price for each item.
In our first test for each bidding event, we run a version of

our model where we ignore all MFC clauses. In the last three
tests, we run our model considering the MFC clauses in
the contracts. For each event, we consider three sub-scenarios:
the prices for the items covered in MFC clauses may drop with
a low probability, a medium probability and a high probability.
The entries in Table 1 show the reduction in total procurement
costs (as a percentage of total procurement costs when all

discount offers are ignored). First, notice that regular discount
offers lead to savings in the range of 0.93–3.23% for the
company. In absolute terms, these savings are substantial for
the company.
Optimizing sourcing decisions by also considering MFC

clauses leads to important additional savings for bidding events
1 and 3. Even under a scenario when the price drops are not
very likely, MFC clauses lead to additional savings up to 0.48%
of the total spend. When the price drop probability is medium,
the additional savings for bidding events 1 and 3 are in the
range of 0.55–1.20%.When the price drops are considered very
likely, the incremental savings are in the range 1.05–1.92%.
Under some scenarios, incremental savings through MFC
clauses are more than savings that are possible with only regular
discount offers. Once again, these additional percentage gains
correspond to substantial monetary savings for the company.
In event 2, the base prices and regular discount offers given by
the MFC suppliers are either already very competitive (leading
the buyer to select them even without MFC clauses) or very
uncompetitive (leading the buyer to select other suppliers
despite the possible MFC benefits).

6.1. Detailed analysis

In order to test our model and the performance of heuristics
proposed in Section 5 in various other settings, we study
bidding event 1a and variations of it in more detail. This event
was held for 44 items. There were four qualified suppliers,
named in the following as A, B, C and D. Table 2 shows the
number of items offered by different groups of suppliers. For
example, four items are offered by all suppliers, while three
items are offered by suppliers A, B and C but not D. For 29
items, 2 or more suppliers compete for the buyer’s spend. There
may be considerable differences between the prices offered by
competing suppliers. In this event, the maximum bid can be as
much as 34.71% higher than the minimum bid. On average, the
maximum bids are 8.29% higher than the minimum bids. Note
that there are 15 items that are offered by a single supplier (13
by supplier A and 2 by supplier B), but they still cannot be
removed from the model and solved independently since some
of the discount offers and MFC conditions involve these items
together with other items offered by multiple firms.

Table 1 The impact of discount offers and MFC clauses on total spend

Test Events

1a 1b 2a 2b 3a 3b

Ignore MFC clauses (regular discount offers only) 0.93 1.26 2.29 2.31 3.22 3.23
Consider MFC clauses when the probability
of a price drop is

Low 0.97 1.67 2.29 2.31 3.70 3.71
Medium 1.48 2.29 2.29 2.31 4.42 4.42
High 1.98 2.91 2.30 2.32 5.14 5.13
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Apart from base prices, suppliers propose various discount
offers. In particular, supplier A submits four, supplier B submits
three and supplier C submits one discount offers. The offers
involve multiple conditions on how much the buyer should buy
from a set of items to qualify for the discount. The number of
items in the condition sets is between 6 and 21. The discounts
usually apply to the same set of items. However, some offers
may apply a discount on items that are not in the condition set.
Each offer provides a price reduction between 3% and 7% of
the base price.
In addition to these eight discount offers, supplier A is

offering an MFC term for four items in its contract. According
to this term, if the buyer procures a certain percentage of total
demand from supplier A, supplier A will ensure that the buyer
will get the lowest price throughout the quarter. That is, if
supplier A drops the price for some or all of the items during the
quarter, the buyer will also benefit from these price drops. We
consider various scenarios for the drop in prices for these
four items.
Since the total procurement spends are usually very large,

we measure the effect of MFC clauses on procurement costs
as a percentage of the savings obtained through regular
discount offers. Let S be the total procurement spend in the
absence of any discount offers. Let D be the procurement
spend when only regular discount offers are utilized (those
offers that are granted, regardless of the price drops to other
customers). In this particular event, S −D is about 0.9321%
of S. That is, regular discount offers lead to 0.9321% cost
savings. Let D* be the optimal expected procurement spend
when MFC clauses are also used. Then we denote the effect
of MFC terms as

J� ¼ 100 ´
D -D�

S -D
: (25)

That is, J* measures the additional benefit of considering
MFC clauses as a percentage of savings through regular
discount offers.
Let DSCE and DDCE be the expected procurement spend if

SCE and DCE heuristics are used, respectively. Then, we
measure the regrets of these heuristics (given that MFC terms
provide savings, ie, D*<D) as follows

ΔSCE ¼ 100 ´
DSCE -D�

D -D� ΔDCE ¼ 100 ´
DDCE -D�

D -D� : (26)

We first consider two-period instances with different scenario
trees. In our simplest experiment, two scenarios are considered:
the prices drop by π units in Period 2 with probability γ or the

prices remain the same with probability 1− γ. The correspond-
ing scenario tree is depicted in Figure 2.
The results are given in Table 3 for different values of γ

and π. Averages are reported in the last row of the table where
the averages are taken over instances for which J*> 0. First,
notice that MFC terms lead to important savings in this bidding
event and, as expected, the benefits increase as the probability
or the magnitude of price drops increase. The condition of the
MFC clause is on the amount ordered in the first period.
Consequently, the SCE and DCE heuristics behave the same
way in the first period. The dynamic heuristic has the possibility
to correct its decision by recourse in the second period. When
γ is small, neither the stochastic optimization model nor the
heuristics choose to fulfill the condition of the MFC clause,
leading to zero optimality gap for the heuristics. However,
when γ is large enough so that it is optimal to satisfy the
condition of the MFC clause, then the gain obtained using the
stochastic optimization model is greater than that of the SCE
heuristic in all cases. The DCE heuristic obtains the same
amount of reduction as our stochastic programming model if it
opts for satisfying the MFC condition in the first period. Hence,
there is a difference between the cost reductions obtained with
these two methods only when the stochastic model chooses to
satisfy the MFC condition and the dynamic heuristic does not
(when γ= 0.5 for a 5% decrease and when γ= 0.2 for a 10%
decrease). In these cases, ΔDCE =100%. One final observation is
that the performance of the SCE heuristic is always worse than
or equal to that of the DCE heuristic.
We can also use our model to fully characterize the regions in

which the buyer should opt for the supplier’s MFC clause and
procure enough to satisfy the condition for MFC status. This

Table 2 Suppliers and their offerings in bidding event 1

Suppliers A, B, C, D A, B, C A, B A, C A, D A C

Number of items 4 3 11 4 7 13 2

Figure 2 Scenario tree for Experiment 1.

Table 3 Results for Experiment 1

Discount amount 5% Discount amount 10%

γ J* ΔSCE ΔDCE J* ΔSCE ΔDCE

0.1 0.00 0.00 0.00 0.00 0.00 0.00
0.2 0.00 0.00 0.00 3.81 100.00 100.00
0.3 0.00 0.00 0.00 21.99 84.12 0.00
0.4 0.00 0.00 0.00 40.17 46.79 0.00
0.5 3.36 100.00 100.00 58.35 32.72 0.00
0.6 10.54 66.84 0.00 76.53 23.35 0.00
0.7 17.72 29.82 0.00 94.71 14.15 0.00
0.8 24.90 14.15 0.00 112.89 7.91 0.00
0.9 32.08 5.49 0.00 131.06 3.41 0.00
Avg 17.72 43.26 20.00 67.44 39.06 12.50
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can be accomplished by solving the model repeatedly to
generate indifference curves. Figure 3 shows the indifference
curve for Experiment 1. For every value of γ, we find the
percentage price drop at which buying enough from the MFC
supplier to qualify for a discount would lead to expected cost
that is equal to what the buyer would get by only using regular
discount offers. This curve can be used to guide the buyer’s
decision, given the estimates for the probability and magnitude
of a price drop. On the indifference curve (eg, when the
probability of price drop is 0.4 and magnitude of price drop is
5.54%), the buyer is indifferent between satisfying the MFC
condition and not. If the probability and/or the magnitude of the
price drop are higher, the buyer should satisfy the MFC
condition.
We next run another two-period experiment in which the

prices may drop in different amounts: 5% or 10% of the original
price. The scenario tree for this experiment is given in Figure 4.
The results for various values of γ1 and γ2 are provided in
Table 4. Once again, the possibility of a MFC status provides
important benefits. The performances of the SCE and DCE
heuristics are similar to those seen for Experiment 1. SCE
heuristic may lead to significant suboptimality in a variety of
settings especially when the price drop probability is small.
DCE heuristic, on the other hand, captures either all or none of
the additional savings possible with MFC terms.
In the third experiment, we group the items into two groups

and assume that each group’s price drops or stays the same
independently from the other group. The scenario tree for this
experiment is given in Figure 5.
The results for various values of γ1, γ2 and γ3 are provided in

Table 5. The results are not structurally different from the first
two experiments, except that we now have more instances
where the certainty-equivalent heuristic cannot capture any of
the benefits of MFC terms.

Our final experiment models three periods. Reflecting the
regular pattern in practice, the demand in each of the periods 1
and 2 is assumed to be 30% of the total demand, while demand
in Period 3 is assumed to be 40%. Figure 6 shows the scenario
tree for this experiment. In order to obtain the MFC status and
benefit from a possible price drop in Period 2, a minimum
amount should be purchased in Period 1. In order to obtain the
MFC status and benefit from a possible price drop in period 3,
the sum of purchases in periods 2 and 3 should be above
another threshold.

Figure 3 Indifference curve for selecting the MFC supplier—
Experiment 1.

Figure 4 Scenario tree for Experiment 2.

Table 4 Results for Experiment 2

γ1 γ2 J* ΔSCE ΔDCE γ1 γ2 J* ΔSCE ΔDCE

0.1 0.1 0.00 0.00 0.00 0.3 0.3 43.53 30.36 0.00
0.2 0.1 0.00 0.00 0.00 0.4 0.3 50.71 22.59 0.00
0.3 0.1 7.18 100.00 100.00 0.5 0.3 57.89 16.75 0.00
0.4 0.1 14.36 75.66 0.00 0.1 0.4 47.35 35.98 0.00
0.5 0.1 21.54 42.26 0.00 0.2 0.4 54.53 28.01 0.00
0.1 0.2 10.99 100.00 100.00 0.3 0.4 61.71 21.90 0.00
0.2 0.2 18.17 80.78 0.00 0.4 0.4 68.89 14.85 0.00
0.3 0.2 25.35 50.96 0.00 0.5 0.4 76.07 8.00 0.00
0.4 0.2 32.53 34.30 0.00 0.1 0.5 65.53 26.45 0.00
0.5 0.2 39.71 23.67 0.00 0.2 0.5 72.71 19.32 0.00
0.1 0.3 29.17 57.38 0.00 0.3 0.5 79.89 12.40 0.00
0.2 0.3 36.35 41.20 0.00 0.4 0.5 87.07 6.62 0.00

Avg 45.51 38.61 9.09

Figure 5 Scenario tree for Experiment 3.
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The results of Experiment 4 are shown in Table 6 for
different values of γ1 and γ2. Considering MFC clauses still
leads to important savings in the three-period model and
savings increase as the probability of a price drop increases.
The percentage gap of the SCE heuristic can be significant,
especially when the price drop probability is low. Structurally,
the performance of the DCE heuristic in the three-period
problem is different than what we observe in the two-period
problem. It is now possible that DCE heuristic lead to a gap
other than 0 and 100%.
In Table 7, we summarize the results of our four experiments.

For each experiment, the column labeled # states the number of
valid instances (ie, those for which MFC terms lead to
additional savings). For each heuristic, the column labeled
Avg(Δ) shows the average regret, the column labeled F shows

Table 5 Results for Experiment 3

γ1 γ2 γ3 J* ΔSCE ΔDCE γ1 γ2 γ3 J* ΔSCE ΔDCE

0.1 0.1 0.0 0.00 0.00 0.00 0.1 0.2 0.1 7.99 100.00 100.00
0.2 0.1 0.0 0.00 0.00 0.00 0.1 0.3 0.1 12.16 100.00 100.00
0.3 0.1 0.0 13.65 98.98 0.00 0.1 0.4 0.1 16.33 100.00 100.00
0.4 0.1 0.0 27.66 44.03 0.00 0.2 0.2 0.1 21.99 84.12 0.00
0.1 0.2 0.0 0.00 0.00 0.00 0.2 0.3 0.1 26.17 76.94 0.00
0.2 0.2 0.0 3.81 100.00 100.00 0.3 0.3 0.1 40.17 46.79 0.00
0.3 0.2 0.0 17.82 94.65 0.00 0.4 0.4 0.1 58.35 32.72 0.00
0.4 0.2 0.0 31.83 48.81 0.00 0.0 0.0 0.2 3.81 100.00 100.00
0.1 0.3 0.0 0.00 0.00 0.00 0.1 0.1 0.2 21.99 84.12 0.00
0.2 0.3 0.0 7.99 100.00 100.00 0.2 0.2 0.2 40.17 46.79 0.00
0.3 0.3 0.0 21.99 84.12 0.00 0.3 0.3 0.2 58.35 32.72 0.00
0.4 0.3 0.0 36.00 47.68 0.00 0.0 0.0 0.3 21.99 84.12 0.00
0.1 0.4 0.0 0.00 0.00 0.00 0.1 0.1 0.3 40.17 46.79 0.00
0.2 0.4 0.0 12.16 100.00 100.00 0.2 0.2 0.3 58.35 32.72 0.00
0.3 0.4 0.0 26.17 76.94 0.00 0.3 0.3 0.3 76.53 23.35 0.00
0.4 0.4 0.0 40.17 46.79 0.00 0.0 0.0 0.4 40.17 46.79 0.00
0.1 0.1 0.1 3.81 100.00 100.00 0.1 0.1 0.4 58.35 32.72 0.00
0.2 0.1 0.1 17.82 94.65 0.00 0.2 0.2 0.4 76.53 23.35 0.00
0.3 0.1 0.1 31.83 48.81 0.00 0.0 0.0 0.5 58.35 32.72 0.00
0.4 0.1 0.1 45.83 30.98 0.00 0.1 0.1 0.5 76.53 23.35 0.00

Avg 32.94 64.76 22.22

Figure 6 Scenario tree for Experiment 4.

Table 6 Results for Experiment 4

γ1 γ2 J* ΔSCE ΔDCE

0.05 0.05 0.00 0.00 0.00
0.10 0.10 1.87 100.00 100.00
0.15 0.15 6.71 85.92 2.50
0.20 0.20 11.17 53.93 1.76
0.25 0.25 15.28 36.28 1.40
0.30 0.30 19.09 27.13 1.17
0.35 0.35 22.63 21.42 1.00
0.40 0.40 25.93 17.14 0.87
0.45 0.45 29.00 14.26 0.75
0.50 0.50 31.88 12.28 0.64
0.55 0.55 34.57 10.90 0.54
0.60 0.60 37.09 8.55 0.45

Avg 21.38 32.26 10.10
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the number of instances where the regret is 100% (ie, the
heuristic does not generate any savings from MFC terms) and
the column S shows the number of instances where the regret
is 0% (ie, the heuristic finds an optimal solution). On average,
SCE heuristic leads to a regret of 49.38% and DCE heuristic
leads to a regret of 15.91%. Out of all 81 instances, SCE
heuristic leads to 0 savings in 13 instances. SCE heuristic
cannot find an optimal solution in any of the 81 instances. DCE
heuristic leads to 0 savings in 13 instances as well. In 58
instances, DCE heuristic finds an optimal solution.

7. Conclusion

In this paper, we study the problem of a buyer who has to
procure large volumes of multiple items over multiple periods
and needs to evaluate discount offers from multiple suppliers for
this purpose. Some of these discounts are tied to future realiza-
tions of random events. The objective of the buyer is to minimize
his expected procurement and inventory holding costs subject to
satisfying its demand and other various side constraints. We
formulate the problem as a scenario-based multi-stage stochastic
optimization model. The formulation is very general in the sense
that we can model various random events such as a supplier
dropping price for other customers or a change in a price-index
or spot price of a commodity. We can also model very complex
offers that are frequently observed in industry such as those that
involve conditions on multiple items and periods and apply
incremental or all-units discounts to multiple items and periods
that are different from those for which the conditions are
imposed on. The model also allows the buyer to carry inventory
to benefit from a discount offer. We also propose two certainty-
equivalent heuristics that can be used for this problem and show
how we can evaluate the performance of these heuristics. We use
our model in a preliminary study to see the effect of MFC status
benefits on three bidding events that were administered by a
global manufacturing company in 2010. The results show that
taking the MFC terms into account using our model leads to
significant savings for the company and using heuristics may fail
to capture most of these savings.
There are many avenues for future research. First, one

may consider modelling uncertainty on other parameters of the

problem. Relevant uncertain parameters for procurement bidding
events include item demands and supplier capacities. For some
of these uncertain parameters, scenario-based formulations may
not be adequate and other approaches may be necessary to model
uncertainty. Second, one may relax the assumption that the buyer
is risk-neutral and consider alternative risk profiles.
In our specific application, the MILPs were solved very

quickly using an off-the-shelf solver. For larger problems,
one may focus on developing efficient approaches. It may be
possible to formulate a stronger model using particular struc-
tures of the discounts, as briefly discussed in Section 4. One can
also consider using decomposition methods as is often done in
solving large scale stochastic optimization problems.
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