670 research outputs found

    Anticipated results from dust experiments on cometary missions

    Get PDF
    The major scientific objectives of a mission are: to determine the chemical nature and physical structure of comet nuclei, and to characterize the changes that occur as a function of time orbital position; to characterize the chemical and physical nature of the atmospheres and ionospheres of comets as well as the processes that occur in them, and to characterize the development of the atmospheres and ionospheres as functions of time and orbital position; and to determine the nature of comet tails and processes by which they are formed, and to characterize the interaction of comets with the solar wind. Since dust is a major constituent of a comet, the achievement of these goals requires the intensive study of the paticulate emission from a comet

    Future European Ground Segment

    Get PDF
    lhe existing European ground infrastructure is capable to support earth observation satellites, the present ARIANE program and scientific manned spaceflight missions as demonstrated during the first German Spacelab D 1 mission flown as payload onboard NSTS in October 85. Future European space program like EURECA, COLUMBUS, HERMES, ARIANE 5, DRS and scientifi~ satellites will require a ground based end-to-end o~eration and verification infrastructure (GEOVI) of a new order of magnitude. Individual program needs and required user support ground segments exceed the very tight budgetary frame available for the European space com~unity (agencies and i ndust.ry) . Investments are\u27 necessary for i ndust ri a 1 development faci- 1 iti es to ~upport the AIV phase, support facilities for development and operation, launch and landing facilities operation~ facilities for mission and payload control and payload data facilities for data dissemination, archiving, retrieval etc

    Debris and micrometeorite impact measurements in the laboratory

    Get PDF
    A method was developed to simulate space debris in the laboratory. This method, which is an outgrowth of research in inertial confinement fusion (ICF), uses laser ablation to accelerate material. Using this method, single 60 micron aluminum spheres were accelerated to 15 km/sec and larger 500 micron aluminum spheres were accelerated to 2 km/sec. Also, many small (less than 10 micron diameter) irregularly shaped particles were accelerated to speeds of 100 km/sec

    Integrable atomtronic interferometry

    Full text link
    High sensitivity quantum interferometry requires more than just access to entangled states. It is achieved through deep understanding of quantum correlations in a system. Integrable models offer the framework to develop this understanding. We communicate the design of interferometric protocols for an integrable model that describes the interaction of bosons in a four-site configuration. Analytic formulae for the quantum dynamics of certain observables are computed. These expose the system's functionality as both an interferometric identifier, and producer, of NOON states. Being equivalent to a controlled-phase gate acting on two hybrid qudits, this system also highlights an equivalence between Heisenberg-limited interferometry and quantum information. These results are expected to open new avenues for integrability-enhanced atomtronic technologies.Comment: 6 pages, 4 figures, 1 tabl

    Perspectives on Interstellar Dust Inside and Outside of the Heliosphere

    Full text link
    Measurements by dust detectors on interplanetary spacecraft appear to indicate a substantial flux of interstellar particles with masses exceeding 10^{-12}gram. The reported abundance of these massive grains cannot be typical of interstellar gas: it is incompatible with both interstellar elemental abundances and the observed extinction properties of the interstellar dust population. We discuss the likelihood that the Solar System is by chance located near an unusual concentration of massive grains and conclude that this is unlikely, unless dynamical processes in the ISM are responsible for such concentrations. Radiation pressure might conceivably drive large grains into "magnetic valleys". If the influx direction of interstellar gas and dust is varying on a ~10 yr timescale, as suggested by some observations, this would have dramatic implications for the small-scale structure of the interstellar medium.Comment: 13 pages. To appear in Space Science Review

    The Cosmic Infrared Background at 1.25 microns and 2.2 microns using DIRBE and 2MASS: a contribution not due to galaxies ?

    Get PDF
    Using the 2MASS 2nd Incremental Data Release and the Zodiacal-Subtracted Mission Average maps of COBE/DIRBE, we estimate the cosmic background in the J (1.25 micron) and K (2.2 microns) bands using selected areas representing 550 square degrees of sky. We find a J background of 22.9 \pm 7.0 kJy/sr (54.0 \pm 16.8 nW/m2/sr) and a K background of 20.4 \pm 4.9 kJy/sr (27.8 \pm 6.7 nW/m2/sr). This large scale study shows that the main uncertainty comes from the residual zodiacal emission. The cosmic background we obtain is significantly higher than integrated galaxy counts (3.6 \pm 0.8 kJy/sr and 5.3 \pm 1.2 kJy/sr for J and K, respectively), suggesting either an increase of the galaxy luminosity function for magnitudes fainter than 30 or the existence of another contribution to the cosmic background from primeval stars, black holes, or relic particle decay.Comment: 20 pages, 6 figures, accepted in Ap

    The COBE Diffuse Infrared Background Experiment Search for the Cosmic Infrared Background: IV. Cosmological Implications

    Full text link
    In this paper we examine the cosmological constraints of the recent DIRBE and FIRAS detection of the extragalactic background light between 125-5000 microns on the metal and star formation histories of the universe.Comment: 38 pages and 9 figures. Accepted for publications in The Astrophysical Journa

    Well posedness of an isothermal diffusive model for binary mixtures of incompressible fluids

    Full text link
    We consider a model describing the behavior of a mixture of two incompressible fluids with the same density in isothermal conditions. The model consists of three balance equations: continuity equation, Navier-Stokes equation for the mean velocity of the mixture, and diffusion equation (Cahn-Hilliard equation). We assume that the chemical potential depends upon the velocity of the mixture in such a way that an increase of the velocity improves the miscibility of the mixture. We examine the thermodynamic consistence of the model which leads to the introduction of an additional constitutive force in the motion equation. Then, we prove existence and uniqueness of the solution of the resulting differential problem
    • ā€¦
    corecore