163 research outputs found

    New Limits to the Drift of Fundamental Constants from Laboratory Measurements

    Get PDF
    We have remeasured the absolute 1S1S-2S2S transition frequency νH\nu_{\rm {H}} in atomic hydrogen. A comparison with the result of the previous measurement performed in 1999 sets a limit of (29±57)(-29\pm 57) Hz for the drift of νH\nu_{\rm {H}} with respect to the ground state hyperfine splitting νCs\nu_{{\rm {Cs}}} in 133^{133}Cs. Combining this result with the recently published optical transition frequency in 199^{199}Hg+^+ against νCs\nu_{\rm {Cs}} and a microwave 87^{87}Rb and 133^{133}Cs clock comparison, we deduce separate limits on α˙/α=(0.9±2.9)×1015\dot{\alpha}/\alpha = (-0.9\pm 2.9)\times 10^{-15} yr1^{-1} and the fractional time variation of the ratio of Rb and Cs nuclear magnetic moments μRb/μCs\mu_{\rm {Rb}}/\mu_{\rm {Cs}} equal to (0.5±1.7)×1015(-0.5 \pm 1.7)\times 10^{-15} yr1^{-1}. The latter provides information on the temporal behavior of the constant of strong interaction.Comment: 4 pages, 3 figures, LaTe

    BgaA acts as an adhesin to mediate attachment of some pneumococcal strains to human epithelial cells

    Get PDF
    Streptococcus pneumoniae colonization of the respiratory tract is an essential precursor for pneumococcal disease. To colonize efficiently, bacteria must adhere to the epithelial-cell surface. S. pneumoniae possesses surface-associated exoglycosidases that are capable of sequentially deglycosylating human glycans. Two exoglycosidases, neuraminidase (NanA) and β-galactosidase (BgaA), have previously been shown to contribute to S. pneumoniae adherence to human epithelial cells, as deletion of either of these genes results in reduced adherence. It has been suggested that these enzymes may modulate adherence by cleaving sugars to reveal a receptor on host cells. Pretreatment of epithelial cells with exogenous neuraminidase restores the adherence of a nanA mutant, whereas pretreatment with β-galactosidase does not restore the adherence of a bgaA mutant. These data suggest that BgaA may not function to reveal a receptor, and implicate an alternative role for BgaA in adherence. Here we demonstrate that β-galactosidase activity is not required for BgaA-mediated adherence. Addition of recombinant BgaA (rBgaA) to adherence assays and pretreatment of epithelial cells with rBgaA both significantly reduced the level of adherence of the parental strain, but not the BgaA mutant. One possible explanation of these data is that BgaA is acting as an adhesin and that rBgaA is binding to the receptor, preventing bacterial binding. A bead-binding assay demonstrated that BgaA can bind directly to human epithelial cells, supporting the hypothesis that BgaA is an adhesin. Preliminary characterization of the epithelial-cell receptor suggests that it is a glycan in the context of a glycosphingolipid. To further establish the relevance of this adherence mechanism, we demonstrated that BgaA-mediated adherence contributed to adherence of a recent clinical isolate to primary human epithelial cells. Together, these data suggest a novel role for BgaA as an adhesin and suggest that this mechanism could contribute to adherence of at least some pneumococcal strains in vivo

    The role of doxorubicin in non-viral gene transfer in the lung

    Get PDF
    a b s t r a c t Proteasome inhibitors have been shown to increase adeno-associated virus (AAV)-mediated transduction in vitro and in vivo. To assess if proteasome inhibitors also increase lipid-mediated gene transfer with relevance to cystic fibrosis (CF), we first assessed the effects of doxorubicin and N-acetyl-L-leucinyl-L-leucinal-L-norleucinal in non-CF (A549) and CF (CFTE29o-) airway epithelial cell lines. CFTE29o-cells did not show a response to Dox or LLnL; however, gene transfer in A549 cells increased in a dose-related fashion (p < 0.05), up to approximately 20-fold respectively at the optimal dose (no treatment: 9.3 Â 10 4 AE 1.5 Â 10 3 , Dox: 1.6 Â 10 6 AE 2.6 Â 10 5 , LLnL: 1.9 Â 10 6 AE 3.2 Â 10 5 RLU/mg protein). As Dox is used clinically in cancer chemotherapy we next assessed the effect of this drug on non-viral lung gene transfer in vivo. CF knockout mice were injected intraperitoneally (IP) with Dox (25-100 mg/kg) immediately before nebulisation with plasmid DNA carrying a luciferase reporter gene under the control of a CMV promoter/ enhancer (pCIKLux) complexed to the cationic lipid GL67A. Dox also significantly (p < 0.05) increased expression of a plasmid regulated by an elongation factor 1a promoter (hCEFI) approximately 8-fold. Although administration of Dox before lung gene transfer may not be a clinically viable option, understanding how Dox increases lung gene expression may help to shed light on intracellular bottle-necks to gene transfer, and may help to identify other adjuncts that may be more appropriate for use in man

    Air–liquid interface cultures enhance the oxygen supply and trigger the structural and functional differentiation of intestinal porcine epithelial cells (IPEC)

    Get PDF
    The specific function of the epithelium as critical barrier between the intestinal lumen and the organism’s internal microenvironment is reflected by permanent maintenance of intercellular junctions and cellular polarity. The intestinal epithelial cells are responsible for absorption of nutritional components, facing mechanical stress and a changing oxygen supplementation via blood stream. Oxygen itself can regulate the barrier and the absorptive function of the epithelium. Therefore, we compared the dish cell culture, the transwell-like membrane culture and the oxygen enriched air–liquid interface (ALI) culture. We demonstrated strong influence of the different culture conditions on morphology and function of intestinal porcine epithelial cell lines in vitro. ALI culture resulted in a significant increase in cell number, epithelial cell layer thickness and expression as well as apical localisation of the microvilli-associated protein villin. Remarkable similarities regarding the morphological parameters were observed between ALI cultures and intestinal epithelial cells in vivo. Furthermore, the functional analysis of protein uptake and degradation by the epithelial cells demonstrated the necessity of sufficient oxygen supply as achieved in ALI cultures. Our study is the first report providing marked evidence that optimised oxygen supply using ALI cultures directly affects the morphological differentiation and functional properties of intestinal epithelial cells in vitro

    Zinc Deficiency via a Splice Switch in Zinc Importer ZIP2/SLC39A2 Causes Cystic Fibrosis-Associated MUC5AC Hypersecretion in Airway Epithelial Cells

    Get PDF
    Airway mucus hyperproduction and fluid imbalance are important hallmarks of cystic fibrosis (CF), the most common life-shortening genetic disorder in Caucasians. Dysregulated expression and/or function of airway ion transporters, including cystic fibrosis transmembrane conductance regulator (CFTR) and epithelial sodium channel (ENaC), have been implicated as causes of CF-associated mucus hypersecretory phenotype. However, the contributory roles of other substances and transporters in the regulation of CF airway pathogenesis remain unelucidated. Here, we identified a novel connection between CFTR/ENaC expression and the intracellular Zn2 + concentration in the regulation of MUC5AC, a major secreted mucin that is highly expressed in CF airway. CFTR-defective and ENaC-hyperactive airway epithelial cells specifically and highly expressed a unique, alternative splice isoform of the zinc importer ZIP2/SLC39A2 (ΔC-ZIP2), which lacks the C-terminal domain. Importantly, ΔC-ZIP2 levels correlated inversely with wild-type ZIP2 and intracellular Zn2 + levels. Moreover, the splice switch to ΔC-ZIP2 as well as decreased expression of other ZIPs caused zinc deficiency, which is sufficient for induction of MUC5AC; while ΔC-ZIP2 expression per se induced ENaC expression and function. Thus, our findings demonstrate that the novel splicing switch contributes to CF lung pathology via the novel interplay of CFTR, ENaC, and ZIP2 transporters

    Identification of Transcription Factors Regulating CTNNAL1 Expression in Human Bronchial Epithelial Cells

    Get PDF
    Adhesion molecules play important roles in airway hyperresponsiveness or airway inflammation. Our previous study indicated catenin alpha-like 1 (CTNNAL1), an alpha-catenin-related protein, was downregulated in asthma patients and animal model. In this study, we observed that the expression of CTNNAL1 was increased in lung tissue of the ozone-stressed Balb/c mice model and in acute ozone stressed human bronchial epithelial cells (HBEC). In order to identify the possible DNA-binding proteins regulating the transcription of CTNNAL1 gene in HBEC, we designed 8 oligo- nucleotide probes corresponding to various regions of the CTNNAL1 promoter in electrophoretic mobility shift assays (EMSA). We detected 5 putative transcription factors binding sites within CTNNAL1 promoter region that can recruit LEF-1, AP-2α and CREB respectively by EMSA and antibody supershift assay. Chromatin immunoprecipitation (ChIP) assay verified that AP-2 α and LEF-1 could be recruited to the CTNNAL1 promoter. Therefore we further analyzed the functions of putative AP-2 and LEF-1 sites within CTNNAL1 promoter by site-directed mutagenesis of those sites within pGL3/FR/luc. We observed a reduction in human CTNNAL1 promoter activity of mutants of both AP-2α and LEF-1 sites. Pre-treatment with ASOs targeting LEF-1and AP-2α yielded significant reduction of ozone-stress-induced CTNNAL1 expression. The activation of AP-2α and LEF-1, followed by CTNNAL1 expression, showed a correlation during a 16-hour time course. Our data suggest that a robust transcriptional CTNNAL1 up-regulation occurs during acute ozone-induced stress and is mediated at least in part by ozone-induced recruitments of LEF-1 and AP-2α to the human CTNNAL1 promoter

    Tyrosine kinase c-Src constitutes a bridge between cystic fibrosis transmembrane regulator channel failure and MUC1 overexpression in cystic fibrosis

    Get PDF
    Fil: González Guerrico, Anatilde M. Instituto de Investigaciones Bioquı́micas Fundación Campomar (UBA, CONICET), 1405 Buenos Aires; Argentina.Fil: Cafferata, Eduardo. ANLIS Dr.C.G.Malbrán. Centro Nacional de Genética Médica; Argentina.Fil: Radrizzani, Martín. ANLIS Dr.C.G.Malbrán. Centro Nacional de Genética Médica; Argentina.Fil: Marcucci, Florencia. Instituto de Investigaciones Bioquı́micas Fundación Campomar (UBA, CONICET), 1405 Buenos Aires; Argentina.Fil: Gruenert, Dieter. Human Molecular Genetics Unit, Department of Medicine, University of Vermont, Burlington; Estados Unidos.Fil: Pivetta, Omar H. ANLIS Dr.C.G.Malbrán. Centro Nacional de Genética Médica; Argentina.Fil: Favaloro, Roberto R. Fundación Favaloro, 1093 Buenos Aires; Argentina.Fil: Laguens, Rubén. Fundación Favaloro, 1093 Buenos Aires; Argentina.Fil: Perrone, Sergio V. Fundación Favaloro, 1093 Buenos Aires; Argentina.Fil: Gallo, Guillermo C. Hospital de Pediatrı́a Prof. Dr. Juan P. Garrahan, 1425 Buenos Aires; Argentina.Fil: Santa-Coloma, Tomás A. Instituto de Investigaciones Bioquı́micas Fundación Campomar (UBA, CONICET), 1405 Buenos Aires; Argentina.Cystic fibrosis (CF), a disease caused by mutations in the cystic fibrosis transmembrane regulator (CFTR) chloride channel, is associated in the respiratory system with the accumulation of mucus and impaired lung function. The role of the CFTR channel in the regulation of the intracellular pathways that determine the overexpression of mucin genes is unknown. Using differential display, we have observed the differential expression of several mRNAs that may correspond to putative CFTR-dependent genes. One of these mRNAs was further characterized, and it corresponds to the tyrosine kinase c-Src. Additional results suggest that c-Src is a central element in the pathway connecting the CFTR channel with MUC1 overexpression and that the overexpression of mucins is a primary response to CFTR malfunction in cystic fibrosis, which occurs even in the absence of bacterial infection

    A highly attenuated recombinant human respiratory syncytial virus lacking the G protein induces long-lasting protection in cotton rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Respiratory syncytial virus (RSV) is a primary cause of serious lower respiratory tract illness for which there is still no safe and effective vaccine available. Using reverse genetics, recombinant (r)RSV and an rRSV lacking the G gene (ΔG) were constructed based on a clinical RSV isolate (strain 98-25147-X).</p> <p>Results</p> <p>Growth of both recombinant viruses was equivalent to that of wild type virus in Vero cells, but was reduced in human epithelial cells like Hep-2. Replication in cotton rat lungs could not be detected for ΔG, while rRSV was 100-fold attenuated compared to wild type virus. Upon single dose intranasal administration in cotton rats, both recombinant viruses developed high levels of neutralizing antibodies and conferred comparable long-lasting protection against RSV challenge; protection against replication in the lungs lasted at least 147 days and protection against pulmonary inflammation lasted at least 75 days.</p> <p>Conclusion</p> <p>Collectively, the data indicate that a single dose immunization with the highly attenuated ΔG as well as the attenuated rRSV conferred long term protection in the cotton rat against subsequent RSV challenge, without inducing vaccine enhanced pathology. Since ΔG is not likely to revert to a less attenuated phenotype, we plan to evaluate this deletion mutant further and to investigate its potential as a vaccine candidate against RSV infection.</p

    Airway branching morphogenesis in three dimensional culture

    Get PDF
    To access publisher full text version of this article. Please click on the hyperlink in Additional Links fieldBACKGROUND: Lungs develop from the fetal digestive tract where epithelium invades the vascular rich stroma in a process called branching morphogenesis. In organogenesis, endothelial cells have been shown to be important for morphogenesis and the maintenance of organ structure. The aim of this study was to recapitulate human lung morphogenesis in vitro by establishing a three dimensional (3D) co-culture model where lung epithelial cells were cultured in endothelial-rich stroma. METHODS: We used a human bronchial epithelial cell line (VA10) recently developed in our laboratory. This cell line cell line maintains a predominant basal cell phenotype, expressing p63 and other basal markers such as cytokeratin-5 and -14. Here, we cultured VA10 with human umbilical vein endothelial cells (HUVECs), to mimic the close interaction between these cell types during lung development. Morphogenesis and differentiation was monitored by phase contrast microscopy, immunostainings and confocal imaging. RESULTS: We found that in co-culture with endothelial cells, the VA10 cells generated bronchioalveolar like structures, suggesting that lung epithelial branching is facilitated by the presence of endothelial cells. The VA10 derived epithelial structures display various complex patterns of branching and show partial alveolar type-II differentiation with pro-Surfactant-C expression. The epithelial origin of the branching VA10 colonies was confirmed by immunostaining. These bronchioalveolar-like structures were polarized with respect to integrin expression at the cell-matrix interface. The endothelial-induced branching was mediated by soluble factors. Furthermore, fibroblast growth factor receptor-2 (FGFR-2) and sprouty-2 were expressed at the growing tips of the branching structures and the branching was inhibited by the FGFR-small molecule inhibitor SU5402. DISCUSSION: In this study we show that a human lung epithelial cell line can be induced by endothelial cells to form branching bronchioalveolar-like structures in 3-D culture. This novel model of human airway morphogenesis can be used to study critical events in human lung development and suggests a supportive role for the endothelium in promoting branching of airway epithelium
    corecore