15 research outputs found

    A novel approach to pathogen reduction in platelet concentrates using short-wave ultraviolet light

    No full text
    Background: Transfusion of platelet concentrates (PCs) is the basic treatment for severe platelet disorders. PCs carry the risk of pathogen transmission, especially bacteria. Pathogen reduction (PR) by addition of photochemical reagents and irradiation with visible or ultraviolet (UV) light can significantly reduce this risk. We present a novel approach for PR in PCs employing UVC light alone. Study design and methods: UVC PR was evaluated by bacteria and virus infectivity assays. PC quality was investigated by measuring pH, lactate, glucose, hypotonic shock response, platelet aggregation, CD62P expression, and annexin V binding as in vitro parameters. The impact of UVC PR on the platelet proteome was assessed by differential in-gel electrophoresis and compared with changes caused by UVB and gamma-irradiation, respectively. Results: Vigorous agitation of loosely placed PCs generated thin fluid layers that allow penetration of UVC light for inactivation of the six bacteria and six of the seven virus species tested. HIV-1 was only moderately inactivated. UVC light at the dose used (0.4 J/cm) had a minor impact on in vitro parameters and on storage stability of treated PCs. Proteome analysis revealed a common set of 92 (out of 793) protein spots being affected by all three types of irradiation. Specific alterations were most pronounced for gamma-irradiation (45 spots), followed by UVB (11 spots) and UVC (2 spots). Conclusion: UVC irradiation is a potential new method for pathogen reduction in PCs. The data obtained until now justify further development of this process

    Dosage effect of zero to three functional LBR-genes in vivo and in vitro

    No full text
    The Lamin B receptor (LBR) is a pivotal architectural protein in the nuclear envelope. Mutations in the Lamin B receptor lead to nuclear hyposegmentation (Pelger-Huët anomaly). We have exactly quantified the nuclear lobulation in neutrophils from individuals with 0, 1, 2 and 3 functional copies of the lamin B receptor gene and analyzed the effect of different mutation types. Our data demonstrate that there is a highly significant gene-dosage effect between the gene copy number and the nuclear segmentation index of neutrophils. This finding is paralleled by a dose-dependent increase in LBR protein and staining intensity of the nuclear membrane in corresponding lymphoblastoid cell lines, which demonstrates a significant correlation on the protein level as well. We further show that LBR expression continually increases during granulopoiesis in vitro from human precursor cells with ovoid nuclei to multi-segmented neutrophil nuclei 11 days later, indicating relevance for regular human granulopoiesis. Altogether, LBR is a unique model that will allow the systematic study of gene-dosage effects and of modifying endogeneous and exogeneous factors on granulopoiesis

    UVC Irradiation for Pathogen Reduction of Platelet Concentrates and Plasma

    No full text
    Besides the current efforts devoted to microbial risk reduction, pathogen inactivation technologies promise reduction of the residual risk of known and emerging infectious agents. A novel pathogen reduction process for platelets, the THERAFLEX UV-Platelets system, has been developed and is under clinical evaluation for its efficacy and safety. In addition, proof of principle has been shown for UVC treatment of plasma units. The pathogen reduction process is based on application of UVC light of a specific wavelength (254 nm) combined with intense agitation of the blood units to ensure a uniform treatment of all blood compartments. Due to the different absorption characteristics of nucleic acids and proteins, UVC irradiation mainly affects the nucleic acid of pathogens and leukocytes while proteins are largely preserved. UVC treatment significantly reduces the infectivity of platelet units contaminated by disease-causing viruses and bacteria. In addition, it inactivates residual white blood cells in the blood components while preserving platelet function and coagulation factors. Since no photoactive compound needs to be added to the blood units, photoreagent-related adverse events are excluded. Because of its simple and rapid procedure without the need to change the established blood component preparation procedures, UVC-based pathogen inactivation could easily be implemented in existing blood banking procedures

    Main Properties of the THERAFLEX MB-Plasma System for Pathogen Reduction

    No full text
    Methylene blue (MB) treated plasma has been in clinical use for 18 years. The current THERAFLEX MB-Plasma has a number of improved features compared with the original Springe methodology. This overview embodies: the biochemical characteristics of MB, the mechanism of the technology, toxicology, pathogen reduction capacity, current position in clinical setting and status within Europe. The THERAFLEX MB (TMB) procedure is a robust, well standardised system lending itself to transfusion setting and meets the current guidelines. The pathogen kill power of the TMB system, like the other available technologies, is not limitless, probably in order of 6 log for most enveloped viruses and considerably less for non-enveloped ones. It does not induce either new antigen or grossly reducing the function and life span of active principle in fresh frozen plasma (FFP). The removal of the residual MB at the end of the process has the beneficial effect of reducing potential toxic impacts. Clinical haemovigilance data, so far, indicate that cell-free MB plasma is effective in all therapeutic setting requiring FFP, besides inconsistent thrombotic thrombocytopenia purpura data, without serious side-effects or toxicity. The current system is in continuous improvement e.g. regarding virus reduction range, illumination device, software used, and process integration in the blood bank setting
    corecore