1,318 research outputs found

    Non-exponential relaxation and hierarchically constrained dynamics in a protein

    Full text link
    A scaling analysis within a model of hierarchically constrained dynamics is shown to reproduce the main features of non-exponential relaxation observed in kinetic studies of carbonmonoxymyoglobin.Comment: 4 pages, 3 figures in text. Reference errors have been correcte

    Potential climate change impacts on the water balance of subcatchments of the River Spree, Germany

    Get PDF
    Lusatia is considered one of the driest regions of Germany. The climatic water balance is negative even under current climate conditions. Due to global climate change, increased temperatures and a shift of precipitation from summer to winter are expected. Therefore, it is of major interest whether the excess water in winter can be stored and to which extent it is used up on increasing evapotranspiration. Thus, this study focuses on estimating potential climate change impacts on the water balance of two subcatchments of the River Spree using the Soil and Water Integrated Model (SWIM). Climate input was taken from 100 realisations each of two scenarios of the STatistical Analogue Resampling scheme STAR assuming a further temperature increase of 0 K (scenario A) and 2 K by the year 2055 (scenario B) respectively. Resulting from increased temperatures and a shift in precipitation from summer to winter actual evapotranspiration is supposed to increase in winter and early spring, but to decrease in later spring and early summer. This is less pronounced for scenario A than for scenario B. Consequently, also the decrease in discharge and groundwater recharge in late spring is lower for scenario A than for scenario B. The highest differences of runoff generation and groundwater recharge between the two scenarios but also the highest ranges within the scenarios occur in summer and early autumn. It is planned to estimate potential climate change for the catchments of Spree, Schwarze Elster and Lusatian Neisse

    On the structure of the energy distribution function in the hopping regime

    Full text link
    The impact of the dispersion of the transport coefficients on the structure of the energy distribution function for charge carriers far from equilibrium has been investigated in effective-medium approximation for model densities of states. The investigations show that two regimes can be observed in energy relaxation processes. Below a characteristic temperature the structure of the energy distribution function is determined by the dispersion of the transport coefficients. Thermal energy diffusion is irrelevant in this regime. Above the characteristic temperature the structure of the energy distribution function is determined by energy diffusion. The characteristic temperature depends on the degree of disorder and increases with increasing disorder. Explicit expressions for the energy distribution function in both regimes are derived for a constant and an exponential density of states.Comment: 16 page

    The Eliashberg Function of Amorphous Metals

    Full text link
    A connection is proposed between the anomalous thermal transport properties of amorphous solids and the low-frequency behavior of the Eliashberg function. By means of a model calculation we show that the size and frequency dependence of the phonon mean-free-path that has been extracted from measurements of the thermal conductivity in amorphous solids leads to a sizeable linear region in the Eliashberg function at small frequencies. Quantitative comparison with recent experiments gives very good agreement.Comment: 4pp., REVTeX, 1 uuencoded ps fig. Original posting had a corrupted raw ps fig appended. Published as PRB 51, 689 (1995

    Formulating Light Cone QCD on the Lattice

    Full text link
    We present the near light cone Hamiltonian HH in lattice QCD depending on the parameter η\eta, which gives the distance to the light cone. Since the vacuum has zero momentum we can derive an effective Hamiltonian HeffH_{eff} from HH which is only quadratic in the momenta and therefore solvable by standard methods. An approximate ground state wave functional is determined variationally in the limit η0\eta \to 0.Comment: 48 pages, 8 figure

    Potential climate change impacts on the water balance of subcatchments of the River Spree, Germany

    Get PDF
    Lusatia is considered one of the driest regions of Germany. The climatic water balance is negative even under current climate conditions. Due to global climate change, increased temperatures and a shift of precipitation from summer to winter are expected. Therefore, it is of major interest whether the excess water in winter can be stored and to which extent it is used up on increasing evapotranspiration. Thus, this study focuses on estimating potential climate change impacts on the water balance of two subcatchments of the River Spree using the Soil and Water Integrated Model (SWIM). Climate input was taken from 100 realisations each of two scenarios of the STatistical Analogue Resampling scheme STAR assuming a further temperature increase of 0 K (scenario A) and 2 K by the year 2055 (scenario B) respectively. Resulting from increased temperatures and a shift in precipitation from summer to winter actual evapotranspiration is supposed to increase in winter and early spring, but to decrease in later spring and early summer. This is less pronounced for scenario A than for scenario B. Consequently, also the decrease in discharge and groundwater recharge in late spring is lower for scenario A than for scenario B. The highest differences of runoff generation and groundwater recharge between the two scenarios but also the highest ranges within the scenarios occur in summer and early autumn. It is planned to estimate potential climate change for the catchments of Spree, Schwarze Elster and Lusatian Neisse

    Gluon Structure Function of a Color Dipole in the Light-Cone Limit of Lattice QCD

    Full text link
    We calculate the gluon structure function of a color dipole in near-light-cone SU(2) lattice QCD as a function of xBx_B. The quark and antiquark are external non-dynamical degrees of freedom which act as sources of the gluon string configuration defining the dipole. We compute the color dipole matrix element of transversal chromo-electric and chromo-magnetic field operators separated along a direction close to the light cone, the Fourier transform of which is the gluon structure function. As vacuum state in the pure glue sector, we use a variational ground state of the near-light-cone Hamiltonian. We derive a recursion relation for the gluon structure function on the lattice similar to the perturbative DGLAP equation. It depends on the number of transversal links assembling the Schwinger string of the dipole. Fixing the mean momentum fraction of the gluons to the "experimental value" in a proton, we compare our gluon structure function for a dipole state with four links with the NLO \emph{MRST} 2002 and the \emph{CTEQAB-0} parameterizations at Q2=1.5GeV2Q^2=1.5 \mathrm{GeV}^2. Within the systematic uncertainty we find rather good agreement. We also discuss the low xBx_B behavior of the gluon structure function in our model calculation.Comment: 44 pages, 10 figures, to be in accordance with the variant submitted to Phys. Rev.

    Theory of Exciton Migration and Field-Induced Dissociation in Conjugated Polymers

    Full text link
    The interplay of migration, recombination, and dissociation of excitons in disordered media is studied theoretically in the low temperature regime. An exact expression for the photoluminescence spectrum is obtained. The theory is applied to describe the electric field-induced photoluminescence-quenching experiments by Kersting et al. [Phys. Rev. Lett. 73, 1440 (1994)] and Deussen et al. [Synth. Met. 73, 123 (1995)] on conjugated polymer systems. Good agreement with experiment is obtained using an on-chain dissociation mechanism, which implies a separation of the electron-hole pair along the polymer chain.Comment: 4 pages, RevTeX, 2 Postscript figure
    corecore