693 research outputs found

    Designing colloidal ground state patterns using short-range isotropic interactions

    Full text link
    DNA-coated colloids are a popular model system for self-assembly through tunable interactions. The DNA-encoded linkages between particles theoretically allow for very high specificity, but generally no directionality or long-range interactions. We introduce a two-dimensional lattice model for particles of many different types with short-range isotropic interactions that are pairwise specific. For this class of models, we address the fundamental question whether it is possible to reliably design the interactions so that the ground state is unique and corresponds to a given crystal structure. First, we determine lower limits for the interaction range between particles, depending on the complexity of the desired pattern and the underlying lattice. Then, we introduce a `recipe' for determining the pairwise interactions that exactly satisfies this minimum criterion, and we show that it is sufficient to uniquely determine the ground state for a large class of crystal structures. Finally, we verify these results using Monte Carlo simulations.Comment: 19 pages, 7 figure

    A note on the invariant distribution of a quasi-birth-and-death process

    Get PDF
    The aim of this paper is to give an explicit formula of the invariant distribution of a quasi-birth-and-death process in terms of the block entries of the transition probability matrix using a matrix-valued orthogonal polynomials approach. We will show that the invariant distribution can be computed using the squared norms of the corresponding matrix-valued orthogonal polynomials, no matter if they are or not diagonal matrices. We will give an example where the squared norms are not diagonal matrices, but nevertheless we can compute its invariant distribution

    Note on clock synchronization and Edwards transformations

    Full text link
    Edwards transformations relating inertial frames with arbitrary clock synchronization are reminded and put in more general setting. Their group theoretical context is described.Comment: 11 pages, no figures; final version, to appear in Foundations of Physics Letter

    The topological classification of one-dimensional symmetric quantum walks

    Full text link
    We give a topological classification of quantum walks on an infinite 1D lattice, which obey one of the discrete symmetry groups of the tenfold way, have a gap around some eigenvalues at symmetry protected points, and satisfy a mild locality condition. No translation invariance is assumed. The classification is parameterized by three indices, taking values in a group, which is either trivial, the group of integers, or the group of integers modulo 2, depending on the type of symmetry. The classification is complete in the sense that two walks have the same indices if and only if they can be connected by a norm continuous path along which all the mentioned properties remain valid. Of the three indices, two are related to the asymptotic behaviour far to the right and far to the left, respectively. These are also stable under compact perturbations. The third index is sensitive to those compact perturbations which cannot be contracted to a trivial one. The results apply to the Hamiltonian case as well. In this case all compact perturbations can be contracted, so the third index is not defined. Our classification extends the one known in the translation invariant case, where the asymptotic right and left indices add up to zero, and the third one vanishes, leaving effectively only one independent index. When two translationally invariant bulks with distinct indices are joined, the left and right asymptotic indices of the joined walk are thereby fixed, and there must be eigenvalues at 11 or 1-1 (bulk-boundary correspondence). Their location is governed by the third index. We also discuss how the theory applies to finite lattices, with suitable homogeneity assumptions.Comment: 36 pages, 7 figure

    Compressing Random Microstructures via Stochastic Wang Tilings

    Full text link
    This paper presents a stochastic Wang tiling based technique to compress or reconstruct disordered microstructures on the basis of given spatial statistics. Unlike the existing approaches based on a single unit cell, it utilizes a finite set of tiles assembled by a stochastic tiling algorithm, thereby allowing to accurately reproduce long-range orientation orders in a computationally efficient manner. Although the basic features of the method are demonstrated for a two-dimensional particulate suspension, the present framework is fully extensible to generic multi-dimensional media.Comment: 4 pages, 6 figures, v2: minor changes as suggested by reviewers, v3: corrected two typos in the revised versio

    En taksonomi af industrielle tilfredshedsdimensioner: en kvalitativ multicaseundersøgelse

    Get PDF
    Der har hidtil kun været en meget sporadisk forskning i tilfredshedsaspekter i en industriel kontekst. På grund af de særlige karakteristika, der gør sig gældende på B2B markedet, fx købsprocessens varighed, andre købsmotiver o.l., er det rimeligt at antage, at dannelsen af tilfredshed sker på baggrund af særlige faktorer. Resultaterne af en kvalitativ multicaseundersøgelse viste, at købscentermedlemmer på tværs af casevirksomhederne fokuserede på tilfredshedsdimensioner såsom troværdighed, finansielle aspekter, tekniske aspekter og serviceaspekter. Herudover varierer de identificerede tilfredshedsdimensioners vigtighed afhængigt af, hvilken tidsfase købsprocessen befandt sig i. Det viste sig yderligere, at nogle tilfredshedsdimensioner var generiske af natur, hvorimod andre var situationsbestemte og dermed mere unikke af natur. Implikationerne af de fundne resultater har såvel teoretiske som praktiske konsekvenser

    Birth and death processes and quantum spin chains

    Full text link
    This papers underscores the intimate connection between the quantum walks generated by certain spin chain Hamiltonians and classical birth and death processes. It is observed that transition amplitudes between single excitation states of the spin chains have an expression in terms of orthogonal polynomials which is analogous to the Karlin-McGregor representation formula of the transition probability functions for classes of birth and death processes. As an application, we present a characterization of spin systems for which the probability to return to the point of origin at some time is 1 or almost 1.Comment: 14 page

    Pattern equivariant functions and cohomology

    Full text link
    The cohomology of a tiling or a point pattern has originally been defined via the construction of the hull or the groupoid associated with the tiling or the pattern. Here we present a construction which is more direct and therefore easier accessible. It is based on generalizing the notion of equivariance from lattices to point patterns of finite local complexity.Comment: 8 pages including 2 figure
    corecore