226 research outputs found

    Relaxation of a dewetting contact line Part 2: Experiments

    Full text link
    The dynamics of receding contact lines is investigated experimentally through controlled perturbations of a meniscus in a dip coating experiment. We first characterize stationary menisci and their breakdown at the coating transition. It is then shown that the dynamics of both liquid deposition and long-wavelength perturbations adiabatically follow these stationary states. This provides a first experimental access to the entire bifurcation diagram of dynamical wetting, confirming the hydrodynamic theory developed in Part 1. In contrast to quasi-static theories based on a dynamic contact angle, we demonstrate that the transition strongly depends on the large scale flow geometry. We then establish the dispersion relation for large wavenumbers, for which we find that sigma is linear in q. The speed dependence of sigma is well described by hydrodynamic theory, in particular the absence of diverging time-scales at the critical point. Finally, we highlight some open problems related to contact angle hysteresis that lead beyond the current description.Comment: 20 pages, 11 figures Part 1 is stored as Arxiv 0705.357

    Relaxation of a dewetting contact line Part 1: A full-scale hydrodynamic calculation

    Full text link
    The relaxation of a dewetting contact line is investigated theoretically in the so-called "Landau-Levich" geometry in which a vertical solid plate is withdrawn from a bath of partially wetting liquid. The study is performed in the framework of lubrication theory, in which the hydrodynamics is resolved at all length scales (from molecular to macroscopic). We investigate the bifurcation diagram for unperturbed contact lines, which turns out to be more complex than expected from simplified 'quasi-static' theories based upon an apparent contact angle. Linear stability analysis reveals that below the critical capillary number of entrainment, Ca_c, the contact line is linearly stable at all wavenumbers. Away from the critical point the dispersion relation has an asymptotic behaviour sigma~|q| and compares well to a quasi-static approach. Approaching Ca_c, however, a different mechanism takes over and the dispersion evolves from |q| to the more common q^2. These findings imply that contact lines can not be treated as universal objects governed by some effective law for the macroscopic contact angle, but viscous effects have to be treated explicitly.Comment: 21 pages, 9 figure

    Casimir Dispersion Forces and Orientational Pairwise Additivity

    Full text link
    A path integral formulation is used to study the fluctuation-induced interactions between manifolds of arbitrary shape at large separations. It is shown that the form of the interactions crucially depends on the choice of the boundary condition. In particular, whether or not the Casimir interaction is pairwise additive is shown to depend on whether the ``metallic'' boundary condition corresponds to a ``grounded'' or an ``isolated'' manifold.Comment: 6 pages, RevTe

    Coherent Hydrodynamic Coupling for Stochastic Swimmers

    Full text link
    A recently developed theory of stochastic swimming is used to study the notion of coherence in active systems that couple via hydrodynamic interactions. It is shown that correlations between various modes of deformation in stochastic systems play the same role as the relative internal phase in deterministic systems. An example is presented where a simple swimmer can use these correlations to hunt a non-swimmer by forming a hydrodynamic bound state of tunable velocity and equilibrium separation. These results highlight the significance of coherence in the collective behavior of nano-scale stochastic swimmers.Comment: 6 pages, 3 figure

    Casimir Torques between Anisotropic Boundaries in Nematic Liquid Crystals

    Full text link
    Fluctuation-induced interactions between anisotropic objects immersed in a nematic liquid crystal are shown to depend on the relative orientation of these objects. The resulting long-range ``Casimir'' torques are explicitely calculated for a simple geometry where elastic effects are absent. Our study generalizes previous discussions restricted to the case of isotropic walls, and leads to new proposals for experimental tests of Casimir forces and torques in nematics.Comment: 4 pages, 1 figur

    Lifshitz Interaction between Dielectric Bodies of Arbitrary Geometry

    Full text link
    A formulation is developed for the calculation of the electromagnetic--fluctuation forces for dielectric objects of arbitrary geometry at small separations, as a perturbative expansion in the dielectric contrast. The resulting Lifshitz energy automatically takes on the form of a series expansion of the different many-body contributions. The formulation has the advantage that the divergent contributions can be readily determined and subtracted off, and thus makes a convenient scheme for realistic numerical calculations, which could be useful in designing nano-scale mechanical devices

    Small object limit of Casimir effect and the sign of the Casimir force

    Get PDF
    We show a simple way of deriving the Casimir Polder interaction, present some general arguments on the finiteness and sign of mutual Casimir interactions and finally we derive a simple expression for Casimir radiation from small accelerated objects.Comment: 13 pages, late

    Effect of the Heterogeneity of Metamaterials on Casimir-Lifshitz Interaction

    Full text link
    The Casimir-Lifshitz interaction between metamaterials is studied using a model that takes into account the structural heterogeneity of the dielectric and magnetic properties of the bodies. A recently developed perturbation theory for the Casimir-Lifshitz interaction between arbitrary material bodies is generalized to include non-uniform magnetic permeability profiles, and used to study the interaction between the magneto-dielectric heterostructures within the leading order. The metamaterials are modeled as two dimensional arrays of domains with varying permittivity and permeability. In the case of two semi-infinite bodies with flat boundaries, the patterned structure of the material properties is found to cause the normal Casimir-Lifshitz force to develop an oscillatory behavior when the distance between the two bodies is comparable to the wavelength of the patterned features in the metamaterials. The non-uniformity also leads to the emergence of lateral Casimir-Lifshitz forces, which tend to strengthen as the gap size becomes smaller. Our results suggest that the recent studies on Casimir-Lifshitz forces between metamaterials, which have been performed with the aim of examining the possibility of observing the repulsive force, should be revisited to include the effect of the patterned structure at the wavelength of several hundred nanometers that coincides with the relevant gap size in the experiments.Comment: 9 pages, 13 figures. Rewriting equations (10) and (12) and increasing the size of the lettering/numeral in figure

    Quantum energies with worldline numerics

    Full text link
    We present new results for Casimir forces between rigid bodies which impose Dirichlet boundary conditions on a fluctuating scalar field. As a universal computational tool, we employ worldline numerics which builds on a combination of the string-inspired worldline approach with Monte-Carlo techniques. Worldline numerics is not only particularly powerful for inhomogeneous background configurations such as involved Casimir geometries, it also provides for an intuitive picture of quantum-fluctuation-induced phenomena. Results for the Casimir geometries of a sphere above a plate and a new perpendicular-plates configuration are presented.Comment: 8 pages, 2 figures, Submitted to the Proceedings of the Seventh Workshop QFEXT'05 (Barcelona, September 5-9, 2005), Refs updated, version to appear in JPhys

    A class of anisotropic (Finsler-) space-time geometries

    Get PDF
    A particular Finsler-metric proposed in [1,2] and describing a geometry with a preferred null direction is characterized here as belonging to a subclass contained in a larger class of Finsler-metrics with one or more preferred directions (null, space- or timelike). The metrics are classified according to their group of isometries. These turn out to be isomorphic to subgroups of the Poincar\'e (Lorentz-) group complemented by the generator of a dilatation. The arising Finsler geometries may be used for the construction of relativistic theories testing the isotropy of space. It is shown that the Finsler space with the only preferred null direction is the anisotropic space closest to isotropic Minkowski-space of the full class discussed.Comment: 12 pages, latex, no figure
    • …
    corecore