743 research outputs found

    Anisotropic spin-density distribution and magnetic anisotropy of strained La1x_{1-x}Srx_xMnO3_3 thin films: Angle-dependent x-ray magnetic circular dichroism

    Get PDF
    Magnetic anisotropies of ferromagnetic thin films are induced by epitaxial strain from the substrate via strain-induced anisotropy in the orbital magnetic moment and that in the spatial distribution of spin-polarized electrons. However, the preferential orbital occupation in ferromagnetic metallic La1x_{1-x}Srx_xMnO3_3 (LSMO) thin films studied by x-ray linear dichroism (XLD) has always been found out-of-plane for both tensile and compressive epitaxial strain and hence irrespective of the magnetic anisotropy. In order to resolve this mystery, we directly probed the preferential orbital occupation of spin-polarized electrons in LSMO thin films under strain by angle-dependent x-ray magnetic circular dichroism (XMCD). Anisotropy of the spin-density distribution was found to be in-plane for the tensile strain and out-of-plane for the compressive strain, consistent with the observed magnetic anisotropy. The ubiquitous out-of-plane preferential orbital occupation seen by XLD is attributed to the occupation of both spin-up and spin-down out-of-plane orbitals in the surface magnetic dead layer.Comment: 20 pages, 4 figure

    Claudin-1, -3 and -4 proteins and mRNA expression in benign and malignant breast lesions: a research study

    Get PDF
    INTRODUCTION: We compared levels of protein and mRNA expression of three members of the claudin (CLDN) family in malignant breast tumours and benign lesions. METHODS: Altogether, 56 sections from 52 surgically resected breast specimens were analyzed for CLDN1, CLDN3 and CLDN4 expression by immunohistochemistry. mRNA was also analyzed using real-time PCR in 17 of the 52 cases. RESULTS: CLDNs were rarely observed exclusively at tight junction structures. CLDN1 was present in the membrane of normal duct cells and in some of the cell membranes from ductal carcinoma in situ, and was frequently observed in eight out of nine areas of apocrine metaplasia, whereas invasive tumours were negative for CLDN1 or it was present in a scattered distribution among such tumour cells (in 36/39 malignant tumours). CLDN3 was present in 49 of the 56 sections and CLDN4 was present in all 56 tissue sections. However, CLDN4 was highly positive in normal epithelial cells and was decreased or absent in 17 out of 21 ductal carcinoma grade 1, in special types of breast carcinoma (mucinous, papillary, tubular) and in areas of apocrine metaplasia. CLDN1 mRNA was downregulated by 12-fold in the sample (tumour) group as compared with the control group using GAPDH as the reference gene. CLDN3 and CLDN4 mRNA exhibited no difference in expression between invasive tumours and surrounding tissue. CONCLUSIONS: The significant loss of CLDN1 protein in breast cancer cells suggests that CLDN1 may play a role in invasion and metastasis. The loss of CLDN4 expression in areas of apocrine metaplasia and in the majority of grade 1 invasive carcinomas also suggests a particular role for this protein in mammary glandular cell differentiation and carcinogenesis

    Protein Kinase C Activation Has Distinct Effects on the Localization, Phosphorylation and Detergent Solubility of the Claudin Protein Family in Tight and Leaky Epithelial Cells

    Get PDF
    We have previously shown that protein kinase C (PKC) activation has distinct effects on the structure and barrier properties of cultured epithelial cells (HT29 and MDCK I). Since the claudin family of tight junction (TJ)-associated proteins is considered to be crucial for the function of mature TJ, we assessed their expression patterns and cellular destination, detergent solubility and phosphorylation upon PKC stimulation for 2 or 18 h with phorbol myristate acetate (PMA). In HT29 cells, claudins 1, 3, 4 and 5 and possibly claudin 2 were redistributed to apical cell–cell contacts after PKC activation and the amounts of claudins 1, 3 and 5, but not of claudin 2, were increased in cell lysates. By contrast, in MDCK I cells, PMA treatment resulted in redistribution of claudins 1, 3, 4 and 5 from the TJ and in reorganization of the proteins into more insoluble complexes. Claudins 1 and 4 were phosphorylated in both MDCK I and HT29 cells, but PKC-induced changes in claudin phosphorylation state were detected only in MDCK I cells. A major difference between HT29 and MDCK I cells, which have low and high basal transepithelial electrical resistance, respectively, was the absence of claudin 2 in the latter. Our findings show that PKC activation targets in characteristic ways the expression patterns, destination, detergent solubility and phosphorylation state of claudins in epithelial cells with different capacities to form an epithelial barrier

    Analysis of MRE11's function in the 5′→3′ processing of DNA double-strand breaks

    Get PDF
    The resection of DNA double-strand breaks (DSBs) into 3′ single-strand tails is the initiating step of homology-dependent repair pathways. A key player in this process is the MRE11-RAD50-NBS1 complex, but its contribution to and mechanistic role in resection are not well understood. In this study, we took advantage of the Xenopus egg extract system to address these questions. We found that depletion of MRE11 caused a dramatic inhibition of 5′-resection, even for the first nucleotide at the 5′-end. Depletion of Xenopus CtIP also inhibited 5′-strand resection, but this inhibition could be alleviated by excess MRN. Both MRE11 and CtIP could be bypassed by a DNA that carried a 3′-ss-tail. Finally, using purified proteins, we found that MRN could stimulate both the WRN-DNA2-RPA pathway and the EXO1 pathway of resection. These findings provide important insights into the function of MRE11 in 5′-strand resection
    corecore