58 research outputs found

    Subcellular distribution of glutathione and cysteine in cyanobacteria

    Get PDF
    Glutathione plays numerous important functions in eukaryotic and prokaryotic cells. Whereas it can be found in virtually all eukaryotic cells, its production in prokaryotes is restricted to cyanobacteria and proteobacteria and a few strains of gram-positive bacteria. In bacteria, it is involved in the protection against reactive oxygen species (ROS), osmotic shock, acidic conditions, toxic chemicals, and heavy metals. Glutathione synthesis in bacteria takes place in two steps out of cysteine, glutamate, and glycine. Cysteine is the limiting factor for glutathione biosynthesis which can be especially crucial for cyanobacteria, which rely on both the sufficient sulfur supply from the growth media and on the protection of glutathione against ROS that are produced during photosynthesis. In this study, we report a method that allows detection and visualization of the subcellular distribution of glutathione in Synechocystis sp. This method is based on immunogold cytochemistry with glutathione and cysteine antisera and computer-supported transmission electron microscopy. Labeling of glutathione and cysteine was restricted to the cytosol and interthylakoidal spaces. Glutathione and cysteine could not be detected in carboxysomes, cyanophycin granules, cell walls, intrathylakoidal spaces, periplasm, and vacuoles. The accuracy of the glutathione and cysteine labeling is supported by two observations. First, preadsorption of the antiglutathione and anticysteine antisera with glutathione and cysteine, respectively, reduced the density of the gold particles to background levels. Second, labeling of glutathione and cysteine was strongly decreased by 98.5% and 100%, respectively, in Synechocystis sp. cells grown on media without sulfur. This study indicates a strong similarity of the subcellular distribution of glutathione and cysteine in cyanobacteria and plastids of plants and provides a deeper insight into glutathione metabolism in bacteria

    Efficiency of the photosynthetic apparatus in developing needles of Norway spruce ( Picea abies L. Karst.)

    No full text
    The photosynthetic performance of developing spruce ( Picea abies L. Karst.) needles was investigated. As revealed by previous reports, the biosynthesis of chlorophylls and carotenoids was not following the characteristic chloroplast ultrastructure building up during needle elongation process. The aim of our study was to investigate photosynthetic capability (evaluated by oxygen evolution and chlorophyll a fluorescence kinetics measurements), the dynamics of chloroplast pigments biosynthesis and the expression of major photosynthetic proteins as well as to find out possible correlation between components of issue. Low amounts of chlorophylls and carotenoids, LHC II and Rubisco LSU were detected in the embryonic shoot of vegetative buds. Although PS II was functional, oxygen production was not sufficient to compensate for respiration in the same developmental stage. The light compensation point of respiration was successively lowered during the needle elongation. Nevertheless the significant increase in photosynthetic pigments as well as the high level of expression of LHC II and Rubisco LSU proteins was observed in the later stages of needle development. Our results suggest that, besides light, some other environmental factors could be critical for producing fully functional chloroplasts in rapidly growing young needles

    A novel multi-functional chloroplast protein: identification of a 40 kDa immunophilin-like protein located in the thylakoid lumen.

    No full text
    We describe the identification of the first immunophilin associated with the photosynthetic membrane of chloroplasts. This complex 40 kDa immunophilin, designated TLP40 (thylakoid lumen PPIase), located in the lumen of the thylakoids, was found to play a dual role in photosynthesis involving both biogenesis and intraorganelle signalling. It originates in a single-copy nuclear gene, is made as a precursor of 49.2 kDa with a bipartite lumenal targeting transit peptide, and is characterized by a structure including a cyclophilin-like C-terminal segment of 20 kDa, a predicted N-terminal leucine zipper and a potential phosphatase-binding domain. It can exist in different oligomeric conformations and attach to the inner membrane surface. It is confined predominantly to the non-appressed thylakoid regions, the site of protein integration into the photosynthetic membrane. The isolated protein possesses peptidyl-prolyl cis-trans isomerase protein folding activity characteristic of immunophilins, but is not inhibited by cyclosporin A. TLP40 also exerts an effect on dephosphorylation of several key proteins of photosystem II, probably as a constituent of a transmembrane signal transduction chain. This first evidence for a direct role of immunophilins in a photoautotrophic process suggests that light-mediated protein phosphorylation in photosynthetic membranes and the role of the thylakoid lumen are substantially more complex than anticipated

    Ontogenetic vertebral growth patterns in the basking shark Cetorhinus maximus.

    No full text
    Age and growth of the basking shark Cetorhinus maximus (Gunnerus) was examined using vertebral samples from 13 females (261 to 856 cm total length [TL]), 16 males (311 to 840 cm TL) and 11 specimens of unknown sex (376 to 853 cm TL). Vertebral samples were obtained worldwide from museums and institutional and private collections. Examination of multiple vertebrae from along the vertebral column of 10 specimens indica led that vertebral morphology and band pair (alternating opaque and translucent bands) counts changed dramatically along an individual column. Smaller sharks had similar band pair counts along the length of the vertebral column while large sharks had a difference of up to 24 band pairs between the highest and lowest count along the column. Our evidence indicates that band pair deposition may be related to growth and not time in this species and thus the basking shark cannot be directly aged using vertebral band pair counts
    • …
    corecore