36 research outputs found
Feasibility and validation of trans-valvular flow derived by four-dimensional flow cardiovascular magnetic resonance imaging in patients with atrial fibrillation
Background: Four-dimensional (4D) flow cardiovascular magnetic resonance imaging (MRI) is an emerging technique used for intra-cardiac blood flow assessment. The role of 4D flow cardiovascular MRI in the assessment of trans-valvular flow in patients with atrial fibrillation (AF) has not previously been assessed. The purpose of this study was to assess the feasibility, image quality, and internal validity of 4D flow cardiovascular MRI in the quantification of trans-valvular flow in patients with AF.
Methods: Patients with AF and healthy controls in sinus rhythm underwent cardiovascular MRI, including 4D flow studies. Quality assurance checks were done on the raw data and streamlines. Consistency was investigated by trans-valvular flow assessment between the mitral valve (MV) and the aortic valve (AV).
Results: Eight patients with AF (88% male, mean age 62±13 years, mean heart rate (HR) 83±16 beats per minute (bpm)) were included and compared with ten healthy controls (70% male, mean age 41±20 years, mean HR 68.5±9 bpm). All scans were of either good quality with minimal blurring artefacts, or excellent quality with no artefacts. No significant bias was observed between the AV and MV stroke volumes in either healthy controls (–4.8, 95% CI –15.64 to 6.04; P=0.34) or in patients with AF (1.64, 95% CI –4.7 to 7.94; P=0.56). A significant correlation was demonstrated between MV and AV stroke volumes in both healthy controls (r=0.87, 95% CI 0.52 to 0.97; P=0.001) and in AF patients (r=0.82, 95% CI 0.26 to 0.97; P=0.01).
Conclusions: In patients with AF, 4D flow cardiovascular MRI is feasible with good image quality, allowing for quantification of trans-valvular flow
How are the cardiomyocytes aggregated together within the walls of the left ventricular cone?
The manner of packing together of the cardiomyocytes within the walls of the cardiac ventricles has now been investigated for over half a millennium. In 1669, Lower dissected the ventricular mass, likening the arrangement to skeletal musculature, in the form of a myocardial band extending between the right and left atrioventricular junctions. Pettigrew subsequently showed obvious helical arrangements to be evident within the ventricular walls, but emphasised that the cardiomyocytes were attached to each other, and could not justifiably be compared with skeletal cardiomyocytes. Torrent‐Guasp then reactivated the notion that the ventricular mass was formed of a solitary band. Unlike Lower, he dissected the band as extending between the pulmonary to the aortic roots. Multiple investigations conducted using gross dissection and histology, and more recently diffusion tensor magnetic resonance imaging and computed tomographic analysis, have shown an absence of any anatomical boundaries within the walls that might permit the mass uniformly to be dissected so as to reveal the band. A response to a recent letter to the Journal, nonetheless, claimed that the dissections had been validated by clinicians interpreting the findings so as to provide an explanation for ventricular cardiodynamics, arguing that the findings provided a suitable anatomical model for this purpose. Anatomical models, however, are of no value unless they are anatomically correct. In this review, therefore, we summarise the evidence showing that the cardiomyocytes making up the ventricular walls, rather than forming a ventricular myocardial band, are instead aggregated together to form a three‐dimensional myocardial mesh