732 research outputs found
Reversible Fluorination of Graphene: towards a Two-Dimensional Wide Bandgap Semiconductor
We report the synthesis and evidence of graphene fluoride, a two-dimensional
wide bandgap semiconductor derived from graphene. Graphene fluoride exhibits
hexagonal crystalline order and strongly insulating behavior with resistance
exceeding 10 G at room temperature. Electron transport in graphene
fluoride is well described by variable-range hopping in two dimensions due to
the presence of localized states in the band gap. Graphene obtained through the
reduction of graphene fluoride is highly conductive, exhibiting a resistivity
of less than 100 k at room temperature. Our approach provides a new
path to reversibly engineer the band structure and conductivity of graphene for
electronic and optical applications.Comment: 7 pages, 5 figures, revtex, to appear in PR
Evolution of a fluorinated green fluorescent protein
The fluorescence of bacterial cells expressing a variant (GFPm) of the green fluorescent protein (GFP) was reduced to background levels by global replacement of the leucine residues of GFPm by 5,5,5-trifluoroleucine. Eleven rounds of random mutagenesis and screening via fluorescence-activated cell sorting yielded a GFP mutant containing 20 amino acid substitutions. The mutant protein in fluorinated form showed improved folding efficiency both in vivo and in vitro, and the median fluorescence of cells expressing the fluorinated protein was improved {approx}650-fold in comparison to that of cells expressing fluorinated GFPm. The success of this approach demonstrates the feasibility of engineering functional proteins containing many copies of abiological amino acid constituents
Investigation of the spin-glass regime between the antiferromagnetic and superconducting phases in FeSeTe
Using bulk magnetization along with elastic and inelastic neutron scattering
techniques, we have investigated the phase diagram of
FeSeTe and the nature of magnetic correlations in three
nonsuperconducting samples of FeSeTe,
FeSeTe and FeSeTe. A cusp
and hysteresis in the temperature dependence of the magnetization for the
and 0.3 samples indicates spin-glass (SG) ordering below K. Neutron scattering measurements indicate that the spin-glass behavior is
associated with short-range spin density wave (SDW) ordering characterized by a
static component and a low-energy dynamic component with a characteristic
incommensurate wave vector of and an anisotropy
gap of 2.5 meV. Our high -resolution data also show that the
systems undergo a glassy structural distortion that coincides with the
short-range SDW order
Magnetic Structure of Nano-Graphite Moebius Ribbon
We consider the electronic and magnetic properties of nanographite ribbon
with zigzag edges under the periodic or Moebius boundary conditions. The zigzag
nano-graphite ribbons possess edge localized states at the Fermi level which
cause a ferrimagnetic spin polarization localized at the edge sites even in the
very weak Coulomb interaction. The imposition of the Moebius boundary condition
makes the system non-AB-bipartite lattice, and depress the spin polarization,
resulting in the formation of a magnetic domain wall. The width of the magnetic
domain depends on the Coulomb interaction and narrows with increasing U/t.Comment: 4 pages; 6 figures; published at J. Phys. Soc. Jpn. Vol. 72 No. 5 pp.
998-1001 (2003
The Evolution in the Faint-End Slope of the Quasar Luminosity Function
(Abridged) Based on numerical simulations of galaxy mergers that incorporate
black hole (BH) growth, we predict the faint end slope of the quasar luminosity
function (QLF) and its evolution with redshift. Our simulations have yielded a
new model for quasar lifetimes where the lifetime depends on both the
instantaneous and peak quasar luminosities. This motivates a new interpretation
of the QLF in which the bright end consists of quasars radiating at nearly
their peak luminosities, but the faint end is mostly made up of quasars in less
luminous phases of evolution. The faint-end QLF slope is then determined by the
faint-end slope of the quasar lifetime for quasars with peak luminosities near
the observed break. We determine this slope from the quasar lifetime as a
function of peak luminosity, based on a large set of simulations spanning a
wide variety of host galaxy, merger, BH, and ISM gas properties. Brighter peak
luminosity (higher BH mass) systems undergo more violent evolution, and expel
and heat gas more rapidly in the final stages of quasar evolution, resulting in
a flatter faint-end slope (as these objects fall below the observed break in
the QLF more rapidly). Therefore, as the QLF break luminosity moves to higher
luminosities with increasing redshift, implying a larger typical quasar peak
luminosity, the faint-end QLF slope flattens. From the quasar lifetime as a
function of peak luminosity and this interpretation of the QLF, we predict the
faint-end QLF slope and its evolution with redshift in good agreement with
observations. Although BHs grow anti-hierarchically (with lower-mass BHs formed
primarily at lower redshifts), the observed change in slope and differential or
luminosity dependent density evolution in the QLF is completely determined by
the luminosity-dependent quasar lifetime and physics of quasar feedback.Comment: 13 pages, 4 figures, submitted to ApJ (Replacement with minor
revisions and changed sign convention
Free Energy Self-Averaging in Protein-Sized Random Heteropolymers
Current theories of heteropolymers are inherently macrpscopic, but are
applied to folding proteins which are only mesoscopic. In these theories, one
computes the averaged free energy over sequences, always assuming that it is
self-averaging -- a property well-established only if a system with quenched
disorder is macroscopic. By enumerating the states and energies of compact 18,
27, and 36mers on a simplified lattice model with an ensemble of random
sequences, we test the validity of the self-averaging approximation. We find
that fluctuations in the free energy between sequences are weak, and that
self-averaging is a valid approximation at the length scale of real proteins.
These results validate certain sequence design methods which can exponentially
speed up computational design and greatly simplify experimental realizations.Comment: 4 pages, 3 figure
Novel electronic wave interference patterns in nanographene sheets
Superperiodic patterns with a long distance in a nanographene sheet observed
by STM are discussed in terms of the interference of electronic wave functions.
The period and the amplitude of the oscillations decrease spatially in one
direction. We explain the superperiodic patterns with a static linear potential
theoretically. In the k-p model, the oscillation period decreases, and agrees
with experiments. The spatial difference of the static potential is estimated
as 1.3 eV for 200 nm in distance, and this value seems to be reasonable in
order that the potential difference remains against perturbations, for example,
by phonon fluctuations and impurity scatterings. It turns out that the
long-distance oscillations come from the band structure of the two-dimensional
graphene sheet.Comment: Published as a LETTER in J. Phys.: Condens. Matter; 8 pages; 6
figures; Online version at
http://www.iop.org/EJ/S/3/1256/0hJAmc5sCL6d.7sOO.BtLw/abstract/0953-8984/14/3
6/10
Numerical Galaxy Catalog -I. A Semi-analytic Model of Galaxy Formation with N-body simulations
We construct the Numerical Galaxy Catalog (GC), based on a semi-analytic
model of galaxy formation combined with high-resolution N-body simulations in a
-dominated flat cold dark matter (CDM) cosmological model.
The model includes several essential ingredients for galaxy formation, such as
merging histories of dark halos directly taken from N-body simulations,
radiative gas cooling, star formation, heating by supernova explosions
(supernova feedback), mergers of galaxies, population synthesis, and extinction
by internal dust and intervening HI clouds. As the first paper in a series
using this model, we focus on basic photometric, structural and kinematical
properties of galaxies at present and high redshifts. Two sets of model
parameters are examined, strong and weak supernova feedback models, which are
in good agreement with observational luminosity functions of local galaxies in
a range of observational uncertainty. Both models agree well with many
observations such as cold gas mass-to-stellar luminosity ratios of spiral
galaxies, HI mass functions, galaxy sizes, faint galaxy number counts and
photometric redshift distributions in optical pass-bands, isophotal angular
sizes, and cosmic star formation rates. In particular, the strong supernova
feedback model is in much better agreement with near-infrared (K'-band) faint
galaxy number counts and redshift distribution than the weak feedback model and
our previous semi-analytic models based on the extended Press-Schechter
formalism. (Abridged)Comment: 26 pages including 27 figures, accepted for publication in ApJ,
full-resolution version is available at
http://grape.astron.s.u-tokyo.ac.jp/~yahagi/nugc
- …
