168 research outputs found

    Effect of Yoghourt Starter Culture and Nickel Oxide Nanoparticles on the Activity of Enterotoxigenic Staphylococcus aureus in Domiati Cheese

    Get PDF
    Domiati cheese is the most popular type of white soft cheese in Egypt. Staphylococcus aureus is a common microorganism that can easily contaminate Domiati cheese during processing and distribution. Enterotoxigenic S. aureus strains produce staphylococcal enterotoxins (SE) that have been involved in food poisoning outbreaks worldwide. The aim of the present study was to examine the inhibitory effect of yoghourt starter culture and nickel oxide nanoparticles (NiO NPs) on the development of the enterotoxigenic S. aureus together with the enterotoxin production during the manufacturing and storage of Domiati cheese. Fresh cow’s milk was inoculated with S. aureus in a count of six log CFU/mL with the addition of either yoghourt starter culture or NiO Nps. The cytotoxicity of NiO NPs on normal human epithelial cells (HEC) was assessed using the MTT assay. In the current study, the inoculated milk was used for making Domiati cheese and the survival Weibull and log-linear models were fitted to the observed data. The obtained results showed that the mean log count of S. aureus decreased one week earlier by using yoghourt starter culture. Staphylococcal enterotoxin A (SEA) was identified only in the control cheese. Notably, Domiati cheese contained MIC of NiO NPs (35 µg/mL), which resulted in a significant decrease in S. aureus counts since at day 21 of cheese ripening it was not detected (<10 CFU/g). Overall, the current study indicated that the addition of yoghourt starter culture and NiO NPs during the processing of Domiati cheese could be useful candidates against S. aureus and enterotoxin production in the dairy industry

    Wearable contact lens biosensors for continuous glucose monitoring using smartphones

    Get PDF
    Low-cost, robust, and reusable continuous glucose monitoring systems that can provide quantitative measurements at point-of-care settings is an unmet medical need. Optical glucose sensors require complex and time-consuming fabrication processes, and their readouts are not practical for quantitative analyses. Here, a wearable contact lens optical sensor was created for the continuous quantification of glucose at physiological conditions, simplifying the fabrication process and facilitating smartphone readouts. A photonic microstructure having a periodicity of 1.6 μm was printed on a glucose-selective hydrogel film functionalized with phenylboronic acid. Upon binding with glucose, the microstructure volume swelled, which modulated the periodicity constant. The resulting change in the Bragg diffraction modulated the space between zero- and first-order spots. A correlation was established between the periodicity constant and glucose concentration within 0–50 mM. The sensitivity of the sensor was 12 nm mM–1, and the saturation response time was less than 30 min. The sensor was integrated with commercial contact lenses and utilized for continuous glucose monitoring using smartphone camera readouts. The reflected power of the first-order diffraction was measured via a smartphone application and correlated to the glucose concentrations. A short response time of 3 s and a saturation time of 4 min was achieved in the continuous monitoring mode. Glucose-sensitive photonic microstructures may have applications in point-of-care continuous monitoring devices and diagnostics at home settings

    Wearable bifocal contact lens for continual glucose monitoring integrated with smartphone readers

    Get PDF
    Commercial implantable continuous glucose monitoring devices are invasive and discomfort. Here, a minimally-invasive glucose detection system is developed to provide quantitative glucose measurements continually based on bifocal contact lenses. A glucose-sensitive phenylboronic acid derivative is immobilized in a hydrogel matrix and the surface of the hydrogel is imprinted with a Fresnel lens. The glucose-responsive hydrogel is attached to a commercial soft contact lens to be transformed into a bifocal contact lens. The contact lens showed bifocal lengths; far-field focal length originated from the contact lens’ curvature, and near-field focal length resulting from the Fresnel lens. When tear glucose increased, the refractive index and groove depth of the Fresnel lens changed, shifting the near-field focal length and the light focusing efficiency. The recorded optical signals are detected at an identical distance far from the contact lens change. The bifocal contact lens allowed for detecting the tear glucose concentration within the physiological range of healthy individuals and diabetics (0.0–3.3 mm). The contact lens rapidly responded to glucose concentration changes and reached 90% of equilibrium within 40 min. The bifocal contact lens is a wearable diagnostic platform for continual biomarker detection at point-of-care settings

    Contact lenses for color blindness

    Get PDF
    Color vision deficiency (color blindness) is an inherited genetic ocular disorder. While no cure for this disorder currently exists, several methods can be used to increase the color perception of those affected. One such method is the use of color filtering glasses which are based on Bragg filters. While these glasses are effective, they are high cost, bulky, and incompatible with other vision correction eyeglasses. In this work, a rhodamine derivative is incorporated in commercial contact lenses to filter out the specific wavelength bands (≈545–575 nm) to correct color vision blindness. The biocompatibility assessment of the dyed contact lenses in human corneal fibroblasts and human corneal epithelial cells shows no toxicity and cell viability remains at 99% after 72 h. This study demonstrates the potential of the dyed contact lenses in wavelength filtering and color vision deficiency management

    Anthocyanin-functionalized contact lens sensors for ocular pH monitoring

    Get PDF
    Anthocyanins are bioactive compounds naturally found in a variety of leaves, fruits, and vegetables. Anthocyanin pigments undergo a modification in their chemical structure when exposed to different concentrations of hydrogen ions, and they were extensively studied to be used as active elements in biocompatible pH sensors. The ocular pH is a significant parameter to assess the ocular physiology in cases of postocular surgery, keratoconjunctivitis, and ocular rosacea. Contact lenses have the potential to be used as medical diagnostic devices for in situ continuous monitoring of the ocular physiology. Here, anthocyanin-functionalized contact lenses were developed as wearable sensors to monitor the ocular pH. Anthocyanin pigments were extracted from Brassica oleracea and used to functionalize the polymeric matrices of commercial soft contact lenses by soaking and drop-casting processes. Contact lenses responded to the physiological ocular pH of 6.5, 7.0, and 7.5, exhibiting a systematic color shift from pink (pH 6.5) to purple (pH 7.0) and blue (pH 7.5). The functionalization of contact lens sensors was evaluated as a function of the dye concentration. Quantitative values were obtained by comparing the RGB triplets of the colors obtained with the naturally extracted dye and with delphinidin chloride dye in 0.0 to 1.5 mmol L–1 aqueous solution. The functionalization of contact lenses was studied as a function of the soaking time, resulting in best results when soaking for 24 h. The dye leakage from the contact lenses in deionized water was evaluated, and a negligible leakage after 18 h was observed. Poly-2-hydroxy ethylmethacrylate contact lenses were fabricated and cross-linked with anthocyanin dye, resulting in a slight color shift upon pH changes from 6.5 to 7.4. Contact lens pH sensors may be used to continuously monitor the ocular pH at point-of-care settings

    Albuminuria Is Associated with Endothelial Dysfunction and Elevated Plasma Endothelin-1 in Sickle Cell Anemia

    Get PDF
    The pathogenesis of albuminuria in SCD remains incompletely understood. We evaluated the association of albuminuria with measures of endothelial function, and explored associations of both albuminuria and measures of endothelial function with selected biological variables (vascular endothelial growth factor [VEGF], endothelin-1 [ET-1], soluble fms-like tyrosine kinase-1 [sFLT-1], soluble vascular cell adhesion molecule-1 [soluble VCAM-1] and plasma hemoglobin)

    Ophthalmic sensors and drug delivery

    Get PDF
    Advances in multifunctional materials and technologies have allowed contact lenses to serve as wearable devices for continuous monitoring of physiological parameters and delivering drugs for ocular diseases. Since the tear fluids comprise a library of biomarkers, direct measurement of different parameters such as concentration of glucose, urea, proteins, nitrite, and chloride ions, intraocular pressure (IOP), corneal temperature, and pH can be carried out non-invasively using contact lens sensors. Microfluidic contact lens sensor based colorimetric sensing and liquid control mechanisms enable the wearers to perform self-examinations at home using smartphones. Furthermore, drug-laden contact lenses have emerged as delivery platforms using a low dosage of drugs with extended residence time and increased ocular bioavailability. This review provides an overview of contact lenses for ocular diagnostics and drug delivery applications. The designs, working principles, and sensing mechanisms of sensors and drug delivery systems are reviewed. The potential applications of contact lenses in point-of-care diagnostics and personalized medicine, along with the significance of integrating multiplexed sensing units together with drug delivery systems, have also been discussed

    Silver nanoparticle-loaded contact lenses for blue-yellow color vision deficiency

    Get PDF
    Contact lenses can be functionalized to offer advanced capabilities transcending their primary applications in vision correction and cosmetics. Herein, 40 and 60 nm spherical silver nanoparticles (SNPs) are integrated within poly(2-hydroxyethyl methacrylate) (pHEMA) contact lenses toward fabrication of SNP-loaded contact lenses with excellent optical and material properties as wearables for blue-yellow color vision deficiency (CVD) patients. The morphology and optical properties of the SNPs are characterized prepolymerization using the transmission electron microscopy (TEM) and an optical spectrophotometer. Then, the transmission spectra of the SNP-loaded contact lenses at different concentrations along with the wettability and water content are measured, to demonstrate the effect of NPs’ addition on the lenses’ optical and material characteristics. Results indicate that the transmission spectra of SNP-loaded contact lenses, with optimum concentrations, filter out problematic wavelengths of visible light (485–495 nm), which will facilitate better color distinction for blue-yellow CVD patients. The contact lenses’ optical properties are analogous to the commercial colorblind glasses, indicating their effectiveness as color filtering wearables. Finally, the cytobiocompatability analysis of the contact lenses to RAW 264.7 culture of cells shows that they are biocompatible, and the cell viability remains higher than 75% after 24 h in contact with the lenses
    • …
    corecore