54,252 research outputs found
Quantum effects from a purely geometrical relativity theory
A purely geometrical relativity theory results from a construction that
produces from three-dimensional space a happy unification of Kaluza's
five-dimensional theory and Weyl's conformal theory. The theory can provide
geometrical explanations for the following observed phenomena, among others:
(a) lifetimes of elementary particles of lengths inversely proportional to
their rest masses; (b) the equality of charge magnitude among all charged
particles interacting at an event; (c) the propensity of electrons in atoms to
be seen in discretely spaced orbits; and (d) `quantum jumps' between those
orbits. This suggests the possibility that the theory can provide a
deterministic underpinning of quantum mechanics like that provided to
thermodynamics by the molecular theory of gases.Comment: 7 pages, LaTeX jpconf.cls (Institute of Physics Publishing), 6
Encapsulated PostScript figures (Fig. 6 is 1.8M uncompressed); Presented at
VI Mexican School on Gravitation and Mathematical Physics "Approaches to
Quantum Gravity
Spiral slotted phased antenna array
A flush mounting, cavity-backed, dual orthogonal slot antenna for aircraft and space vehicles is described. Improved radiation pattern characteristics are obtained by making the spiral slot pattern elliptical in the aperture plane. A cavity and a flanged aperture plate are configured such that one slot pair is orthogonal with respect to another slot pair within the aperture plate. Coaxial split-tube baluns are used to drive the junctions between corresponding slot pairs. An optional cavity dielectric is provided and a drive coupling arrangement includes a four port comparator hybrid having sum and difference ports respectively, for alternate excitation to produce a single lobe or a double lobe pattern with null. Switching apparatus is provided to connect a common terminal to either of the ports
Coaxial phased array antenna
A coaxial antenna array for communicating circularly polarized electromagnetic radiation is disclosed. A pair of open ended antenna cavities is coaxially constructed and operates by excitation of linear radiation elements arranged within each of the cavities. A pair of crossed dipole radiation devices is centered within the inner cavity and operated by means of a phase shifting network circuit to transmit as well as receive circularly polarized radiation. Four monopole radiation devices are symmetrically arranged to operate in the outer cavity in phase quadrature by means of the phase shifting network circuit to both transmit and receive circularly polarized electromagnetic radiation. Combined operation of the two antenna cavities with a 180 deg phase differential between the fields related to the two antenna cavities provides a broad beam, relatively wide frequency bandwidth communication capability. Particular embodiments disclosed feature a generally square cavity array as well as a circular cavity array
Frequency characteristics of aerial scenes with respect to a video imagining system
Thesis (M.A.)--Boston UniversityAn overall investigation is made of operating characteristics, theoretical limitations and optimum range values for video communication of aerial scenes. Reasons are given for the selection of a particular receiver and the importance of this type of study is indicated from the A.D.P. crystals' complex A.C. frequency response. The restricted contrast range, due to haze, is noted in evaluating the various video systems
Co-movement, Capital and Contracts: 'Normal' Cycles Through Creative Destruction
We develop a unified theory of endogenous business cycles in which expansions are neoclassical growth periods driven by productivity improvements and capital accumulation, while downturns are the result of Keynesian contractions in aggregate demand below potential output. Recessions allow skilled labor to be reallocated to growth promoting activities which fuel subsequent expansions. However, rigidities in production and contractual limitations, inherent to the process of creative destruction, leave capital severely underutilized. A key feature of our equilibrium is the endogenous emergence of long term supply contracts between capitalist owners and producers.Long-term contracting;investment irreversibility;putty-clay technology;asset- specificity;Endogenous cycles and growth
Animal Spirits Meets Creative Destruction
We show how a Schumpeterian process of creative destruction can induce coordination in the timing of entrepreneurial activities across diverse sectors of the economy.Consequently, a multi-sector economy, in which sector-specific, productivity improvements are made by independent, profit-seeking entrepreneurs, can exhibit regular booms, slowdowns and downturns as an inherent part of the long-run growth process.The cyclical equilibrium that we study has a higher long-run growth rate but lower welfare than the corresponding acyclical one.We find that the cycles generated by our model share some features of actual business cycles, and that across cycling economies, a negative relationship emerges between volatility and growth.economic growth;entrepreneurship;innovation;business cycles
Fiscal Shocks and Fiscal Risk Management
We use the returns on a set of international financial securities to identify exogenous shocks to the Canadian federal surplus. We find that a large portion of the variation in the surplus can be replicated by a linear combination of these returns and that the rising debt observed in the 1980s and 1990s was a result of adverse exogenous shocks and a delayed response by the government to these shocks. We develop a formal framework to evaluate the potential gains from a fiscal risk management strategy, using these securities to hedge against exogenous shocks. We show that fiscal risk management can generate significant welfare gains by enhancing the sustainability of fiscal policy and thereby lowering average tax rates.Fiscal policy, sustainability, asset pricing, risk management.
Analysis of phase transitions in the mean-field Blume-Emery-Griffiths model
In this paper we give a complete analysis of the phase transitions in the
mean-field Blume-Emery-Griffiths lattice-spin model with respect to the
canonical ensemble, showing both a second-order, continuous phase transition
and a first-order, discontinuous phase transition for appropriate values of the
thermodynamic parameters that define the model. These phase transitions are
analyzed both in terms of the empirical measure and the spin per site by
studying bifurcation phenomena of the corresponding sets of canonical
equilibrium macrostates, which are defined via large deviation principles.
Analogous phase transitions with respect to the microcanonical ensemble are
also studied via a combination of rigorous analysis and numerical calculations.
Finally, probabilistic limit theorems for appropriately scaled values of the
total spin are proved with respect to the canonical ensemble. These limit
theorems include both central-limit-type theorems when the thermodynamic
parameters are not equal to critical values and non-central-limit-type theorems
when these parameters equal critical values.Comment: 33 pages, revtex
An Analysis of Diffraction in Deep-Inelastic Scattering
We propose a simple parametrization for the deep-inelastic diffractive cross
section. It contains the contribution of production to both the
longitudinal and the transverse diffractive structure functions, and of the
production of final states from transverse photons. We start from
the hard region and perform a suitable extrapolation into the soft region. We
test our model on the 1994 ZEUS and H1 data, and confront it with the H1
conjecture of a singular gluon distribution.Comment: 24 pages, LaTeX, figures included using epsfi
- …
