236 research outputs found

    Ga-68-PSMA ligand PET/CT in patients with prostate cancer: How we review and report

    Get PDF
    Recently, positron emission tomography (PET) imaging using PSMA-ligands has gained high attention as a promising new radiotracer in patients with prostate cancer (PC). Several studies promise accurate staging of primary prostate cancer and restaging after biochemical recurrence with Ga-68-PSMA ligand Positron emission tomography/computed tomography (PET/CT). However, prospective trials and clinical guidelines for this new technique are still missing. Therefore, we summarized our experience with Ga-68-PSMA ligand PET/CT examinations in patients with primary PC and biochemical recurrence. It focuses on the technical and logistical aspects of Ga-68-PSMA ligand PET/CT examination as well as on the specific background for image reading discussing also potential pitfalls. Further, it includes relevant issues on free-text as well as structured reporting used in daily clinical routine

    Ga-68-PSMA ligand PET/CT in patients with prostate cancer: How we review and report

    Get PDF
    Recently, positron emission tomography (PET) imaging using PSMA-ligands has gained high attention as a promising new radiotracer in patients with prostate cancer (PC). Several studies promise accurate staging of primary prostate cancer and restaging after biochemical recurrence with Ga-68-PSMA ligand Positron emission tomography/computed tomography (PET/CT). However, prospective trials and clinical guidelines for this new technique are still missing. Therefore, we summarized our experience with Ga-68-PSMA ligand PET/CT examinations in patients with primary PC and biochemical recurrence. It focuses on the technical and logistical aspects of Ga-68-PSMA ligand PET/CT examination as well as on the specific background for image reading discussing also potential pitfalls. Further, it includes relevant issues on free-text as well as structured reporting used in daily clinical routine

    Application of machine learning to pretherapeutically estimate dosimetry in men with advanced prostate cancer treated with 177Lu-PSMA I&T therapy

    Full text link
    Purpose: Although treatment planning and individualized dose application for emerging prostate-specific membrane antigen (PSMA)-targeted radioligand therapy (RLT) are generally recommended, it is still difficult to implement in practice at the moment. In this study, we aimed to prove the concept of pretherapeutic prediction of dosimetry based on imaging and laboratory measurements before the RLT treatment. Methods: Twenty-three patients with metastatic castration-resistant prostate cancer (mCRPC) treated with 177Lu-PSMA I&T RLT were included retrospectively. They had available pre-therapy 68 Ga-PSMA-HEBD-CC PET/CT and at least 3 planar and 1 SPECT/CT imaging for dosimetry. Overall, 43 cycles of 177Lu-PSMA I&T RLT were applied. Organ-based standard uptake values (SUVs) were obtained from pre-therapy PET/CT scans. Patient dosimetry was calculated for the kidney, liver, spleen, and salivary glands using Hermes Hybrid Dosimetry 4.0 from the planar and SPECT/CT images. Machine learning methods were explored for dose prediction from organ SUVs and laboratory measurements. The uncertainty of these dose predictions was compared with the population-based dosimetry estimates. Mean absolute percentage error (MAPE) was used to assess the prediction uncertainty of estimated dosimetry. Results: An optimal machine learning method achieved a dosimetry prediction MAPE of 15.8 ± 13.2% for the kidney, 29.6% ± 13.7% for the liver, 23.8% ± 13.1% for the salivary glands, and 32.1 ± 31.4% for the spleen. In contrast, the prediction based on literature population mean has significantly larger MAPE (p < 0.01), 25.5 ± 17.3% for the kidney, 139.1% ± 111.5% for the liver, 67.0 ± 58.3% for the salivary glands, and 54.1 ± 215.3% for the spleen. Conclusion: The preliminary results confirmed the feasibility of pretherapeutic estimation of treatment dosimetry and its added value to empirical population-based estimation. The exploration of dose prediction may support the implementation of treatment planning for RLT

    Application of machine learning to pretherapeutically estimate dosimetry in men with advanced prostate cancer treated with 177Lu-PSMA I&T therapy.

    Get PDF
    PURPOSE Although treatment planning and individualized dose application for emerging prostate-specific membrane antigen (PSMA)-targeted radioligand therapy (RLT) are generally recommended, it is still difficult to implement in practice at the moment. In this study, we aimed to prove the concept of pretherapeutic prediction of dosimetry based on imaging and laboratory measurements before the RLT treatment. METHODS Twenty-three patients with metastatic castration-resistant prostate cancer (mCRPC) treated with 177Lu-PSMA I&T RLT were included retrospectively. They had available pre-therapy 68 Ga-PSMA-HEBD-CC PET/CT and at least 3 planar and 1 SPECT/CT imaging for dosimetry. Overall, 43 cycles of 177Lu-PSMA I&T RLT were applied. Organ-based standard uptake values (SUVs) were obtained from pre-therapy PET/CT scans. Patient dosimetry was calculated for the kidney, liver, spleen, and salivary glands using Hermes Hybrid Dosimetry 4.0 from the planar and SPECT/CT images. Machine learning methods were explored for dose prediction from organ SUVs and laboratory measurements. The uncertainty of these dose predictions was compared with the population-based dosimetry estimates. Mean absolute percentage error (MAPE) was used to assess the prediction uncertainty of estimated dosimetry. RESULTS An optimal machine learning method achieved a dosimetry prediction MAPE of 15.8 ± 13.2% for the kidney, 29.6% ± 13.7% for the liver, 23.8% ± 13.1% for the salivary glands, and 32.1 ± 31.4% for the spleen. In contrast, the prediction based on literature population mean has significantly larger MAPE (p < 0.01), 25.5 ± 17.3% for the kidney, 139.1% ± 111.5% for the liver, 67.0 ± 58.3% for the salivary glands, and 54.1 ± 215.3% for the spleen. CONCLUSION The preliminary results confirmed the feasibility of pretherapeutic estimation of treatment dosimetry and its added value to empirical population-based estimation. The exploration of dose prediction may support the implementation of treatment planning for RLT

    Proof-of-concept Study to Estimate Individual Post-Therapy Dosimetry in Men with Advanced Prostate Cancer Treated with 177Lu-PSMA I&T Therapy

    Full text link
    It is still debating if individualized dose should be applied for the emerging PSMA-targeted radionuclide therapy (RLT). A critical consideration in this debate is the necessity and feasibility of individual estimation of post-therapy dosimetry before the treatment. In this study, we aimed to prove the concept of individual dosimetry prediction based on pre-therapy imaging and laboratory measurements. Methods: 23 patients with metastatic castration-resistant prostate cancer (mCRPC) treated with 177Lu-PSMA-I&T RLT were included retrospectively. Included patients had available pre-therapeutic 68Ga-PSMA-HEBD-CC PET/CT and at least 3 planar and 1 SPECT/CT dosimetry imaging. Overall, 43 cycles of 177Lu-PSMA I&T RLT were applied. Organ-based standard uptake value (SUV) uptake was obtained from pretherapy PET/CT scans. Patient individual dosimetry was calculated for kidney, liver, spleen, and salivary glands using Hermes Hybrid Dosimetry 4.0 from the post-treatment 177Lu-PSMA I&T imaging studies. Machine learning methods were explored for individual dose prediction from PET images. The accuracy of these dose predictions was compared with the accuracy of population-based dosimetry estimates. Mean absolute percentage error was used to assess the prediction error of estimated dosimetry. Results: An optimal machine learning method achieved a dosimetry prediction error of 15.8 ± 13.2% for kidney, 29.6%±13.7% for liver, 23.8%±13.1% for salivary glands and 32.1 ± 31.4% for spleen. In contrast, the prediction based on literature population mean has significantly larger error (p < 0.01), 25.5 ± 17.3% for kidney, 139.1%±111.5% for liver, 67.0 ± 58.3% for salivary glands, and 54.1 ± 215.3% for spleen. Conclusion: The preliminary results confirmed the feasibility of individual estimation of post-therapy dosimetry before the RLT and its added value to empirical population-based estimation. The exploration of individual dose prediction may support the identification of the role of treatment planning for RLT

    In vivo molecular imaging of chemokine receptor CXCR4 expression in patients with advanced multiple myeloma

    Get PDF
    CXCR4 is a G-protein-coupled receptor that mediates recruitment of blood cells toward its ligand SDF-1. In cancer, high CXCR4 expression is frequently associated with tumor dissemination and poor prognosis. We evaluated the novel CXCR4 probe [(68)Ga]Pentixafor for in vivo mapping of CXCR4 expression density in mice xenografted with human CXCR4-positive MM cell lines and patients with advanced MM by means of positron emission tomography (PET). [(68)Ga]Pentixafor PET provided images with excellent specificity and contrast. In 10 of 14 patients with advanced MM [(68)Ga]Pentixafor PET/CT scans revealed MM manifestations, whereas only nine of 14 standard [(18)F]fluorodeoxyglucose PET/CT scans were rated visually positive. Assessment of blood counts and standard CD34(+) flow cytometry did not reveal significant blood count changes associated with tracer application. Based on these highly encouraging data on clinical PET imaging of CXCR4 expression in a cohort of MM patients, we conclude that [(68)Ga]Pentixafor PET opens a broad field for clinical investigations on CXCR4 expression and for CXCR4-directed therapeutic approaches in MM and other diseases

    Joint EANM/SNMMI procedure guideline for the use of 177Lu-labeled PSMA-targeted radioligand-therapy (177Lu-PSMA-RLT)

    Get PDF
    Prostate-specific membrane antigen (PSMA) is expressed by the majority of clinically significant prostate adenocarcinomas, and patients with target-positive disease can easily be identified by PSMA PET imaging. Promising results with PSMA-targeted radiopharmaceutical therapy have already been obtained in early-phase studies using various combinations of targeting molecules and radiolabels. Definitive evidence of the safety and efficacy of [177Lu]Lu-PSMA-617 in combination with standard-of-care has been demonstrated in patients with metastatic castration-resistant prostate cancer, whose disease had progressed after or during at least one taxane regimen and at least one novel androgen-axis drug. Preliminary data suggest that 177Lu-PSMA-radioligand therapy (RLT) also has high potential in additional clinical situations. Hence, the radiopharmaceuticals [177Lu]Lu-PSMA-617 and [177Lu]Lu-PSMA-I&amp;T are currently being evaluated in ongoing phase 3 trials. The purpose of this guideline is to assist nuclear medicine personnel, to select patients with highest potential to benefit from 177Lu-PSMA-RLT, to perform the procedure in accordance with current best practice, and to prepare for possible side effects and their clinical management. We also provide expert advice, to identify those clinical situations which may justify the off-label use of [177Lu]Lu-PSMA-617 or other emerging ligands on an individual patient basis

    Optimum imaging strategies for advanced prostate cancer: ASCO guideline

    Get PDF
    PURPOSE Provide evidence- and expert-based recommendations for optimal use of imaging in advanced prostate cancer. Due to increases in research and utilization of novel imaging for advanced prostate cancer, this guideline is intended to outline techniques available and provide recommendations on appropriate use of imaging for specified patient subgroups. METHODS An Expert Panel was convened with members from ASCO and the Society of Abdominal Radiology, American College of Radiology, Society of Nuclear Medicine and Molecular Imaging, American Urological Association, American Society for Radiation Oncology, and Society of Urologic Oncology to conduct a systematic review of the literature and develop an evidence-based guideline on the optimal use of imaging for advanced prostate cancer. Representative index cases of various prostate cancer disease states are presented, including suspected high-risk disease, newly diagnosed treatment-naĂŻve metastatic disease, suspected recurrent disease after local treatment, and progressive disease while undergoing systemic treatment. A systematic review of the literature from 2013 to August 2018 identified fully published English-language systematic reviews with or without meta-analyses, reports of rigorously conducted phase III randomized controlled trials that compared $ 2 imaging modalities, and noncomparative studies that reported on the efficacy of a single imaging modality. RESULTS A total of 35 studies met inclusion criteria and form the evidence base, including 17 systematic reviews with or without meta-analysis and 18 primary research articles. RECOMMENDATIONS One or more of these imaging modalities should be used for patients with advanced prostate cancer: conventional imaging (defined as computed tomography [CT], bone scan, and/or prostate magnetic resonance imaging [MRI]) and/or next-generation imaging (NGI), positron emission tomography [PET], PET/CT, PET/MRI, or whole-body MRI) according to the clinical scenario

    Suppression of intratumoral CCL22 by type I interferon inhibits migration of regulatory T cells and blocks cancer progression

    Get PDF
    The chemokine CCL22 is abundantly expressed in many types of cancer and is instrumental for intratumoral recruitment of regulatory T cells (Treg), an important subset of immunosuppressive and tumor-promoting lymphocytes. In this study, we offer evidence for a generalized strategy to blunt Treg activity that can limit immune escape and promote tumor rejection. Activation of innate immunity with Toll-like receptor (TLR) or RIG-I-like receptor (RLR) ligands prevented accumulation of Treg in tumors by blocking their immigration. Mechanistic investigations indicated Treg blockade was a consequence of reduced intratumoral CCL22 levels caused by type I interferon. Notably, stable expression of CCL22 abrogated the antitumor effects of treatment with RLR or TLR ligands. Taken together, our findings argue that type I interferon blocks the Treg-attracting chemokine CCL22 and thus helps limit the recruitment of Treg to tumors, a finding with implications for cancer immunotherapy
    • …
    corecore