14 research outputs found

    Nanotechnology and global energy demand: challenges and prospects for a paradigm shift in the oil and gas industry.

    Get PDF
    The exploitation of new hydrocarbon discoveries in meeting the present global energy demand is a function of the availability and application of new technologies. The relevance of new technologies is borne out of the complex subsurface architecture and conditions of offshore petroleum plays. Conventional techniques, from drilling to production, for exploiting these discoveries may require adaption for such subsurface conditions as they fail under conditions of high pressure and high temperature. The oil and gas industry over the past decades has witnessed increased research into the use of nanotechnology with great promise for drilling operations, enhanced oil recovery, reservoir characterization, production, etc. The prospect for a paradigm shift towards the application of nanotechnology in the oil and gas industry is constrained by evolving challenges with its progression. This paper gave a review of developments from nano-research in the oil and gas industry, challenges and recommendations

    Effect of Grafted Copolymer Composition on Iron Oxide Nanoparticle Stability and Transport in Porous Media at High Salinity

    No full text
    The transport of engineered nanoparticles in porous media is of interest in numerous applications including electromagnetic imaging of subsurface reservoirs, enhanced oil recovery, and CO2 sequestration. A series of poly(2-acrylamido-2-methyl-1-propanesulfonic acid-co-acrylic acid) (poly(AMPS-co-AA)) random copolymers were grafted onto iron oxide (IO) nanoparticles (NPs) to provide colloidal stability in American Petroleum Institute (API) standard brine (8 wt/wt % NaCl and 2 wt/wt %CaCl2, anhydrous basis). A combinatorial approach, which employed grafting poly(AMPS-co-AA) with wide ranges of compositions onto platform amine-functionalized 10 NPs via a 1-ethyl-3-(3-(dimethylamino)propyl)-carbondiimidecarbondiimide (EDC) catalyzed amidation, was used to screen a large number of polymeric coatings. The ratio of AMPS/AA was varied from 1:1 to 20:1 to balance the requirements of particle stabilization, low adsorption/retention (provided by 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS)), and permanent attachment of stabilizer (provided by acrylic acid (AA)). The resulting nanoparticles remained stable in aqueous suspension despite the extremely high salinity conditions and exhibited low adsorption on silica microspheres. Greater than 91% of applied IO-NP mass was transported through columns packed quartz sand, and the mobility of IO NP increased by ca. 6% when the AMPS to AA ratio was increased from 1:1 to 3:1, consistent with batch adsorption data. In both static batch reactor and dynamic column tests, the observed attachment of IO NPs was attributed to divalent cation (Ca2+) mediated bridging and hydrophobic interactions. Collectively, the rapid, high throughput combinatorial approach of grafting and screening (via batch adsorption) provides for the development of high mobility NPs for delivery in various porous media under high salinity conditions
    corecore