666 research outputs found

    Early results after mitral valvuloplasty for pure mitral regurgitation

    Get PDF
    In this study we present the results of 105 consecutive patients with pure mitral regurgitation who underwent surgical treatment. In all patients mitral regurgitation was associated with mitral valve prolapse: 54 patients underwent mitral valvuloplasty and 51 patients mitral valve replacement. Clinical assessment and echocardiography were used as follow-up criteria at one year after surgery. After mitral valvuloplasty, NYH A decreased from 2.7±0.8 to 1.1±0.7 (P<0.01) and workload capacity increased from 65±28% to 96±25% (P<0.001); left endsystolic atrial dimension and enddiastolic dimension decreased from 6.2±0.8 to 4.8±1.2 cm (P<0.001) and from 7.2±1.3 to 5.9±0.8 cm (P<0.01); ventricular contraction fraction did not change significantly. After mitral valve replacement, clinical and echocardiographic improvement was significant but less remarkable than after valvuloplasty; ventricular contraction fraction fell from 39±7% to 29±8% in contrast to patients undergoing mitral valvuloplasty in whom no significant change occurred. Complications were rare in both groups though only a minority of patients undergoing mitral valvuloplasty received anticoagulants. We conclude that mitral valvuloplasty in patients with pure mitral regurgitation associated with mitral valve prolapse gives excellent results, particularly regarding left ventricular function when compared with the patients after mitral valve replacemen

    Hilbert geometry for convex polygonal domains

    Get PDF
    We prove in this paper that the Hilbert geometry associated with an open convex polygonal set is Lipschitz equivalent to Euclidean plane

    A measure of majorisation emerging from single-shot statistical mechanics

    Full text link
    The use of the von Neumann entropy in formulating the laws of thermodynamics has recently been challenged. It is associated with the average work whereas the work guaranteed to be extracted in any single run of an experiment is the more interesting quantity in general. We show that an expression that quantifies majorisation determines the optimal guaranteed work. We argue it should therefore be the central quantity of statistical mechanics, rather than the von Neumann entropy. In the limit of many identical and independent subsystems (asymptotic i.i.d) the von Neumann entropy expressions are recovered but in the non-equilbrium regime the optimal guaranteed work can be radically different to the optimal average. Moreover our measure of majorisation governs which evolutions can be realized via thermal interactions, whereas the nondecrease of the von Neumann entropy is not sufficiently restrictive. Our results are inspired by single-shot information theory.Comment: 54 pages (15+39), 9 figures. Changed title / changed presentation, same main results / added minor result on pure bipartite state entanglement (appendix G) / near to published versio

    A natural Finsler--Laplace operator

    Full text link
    We give a new definition of a Laplace operator for Finsler metric as an average with regard to an angle measure of the second directional derivatives. This definition uses a dynamical approach due to Foulon that does not require the use of connections nor local coordinates. We show using 1-parameter families of Katok--Ziller metrics that this Finsler--Laplace operator admits explicit representations and computations of spectral data.Comment: 25 pages, v2: minor modifications, changed the introductio

    Derivatives and Credit Contagion in Interconnected Networks

    Get PDF
    The importance of adequately modeling credit risk has once again been highlighted in the recent financial crisis. Defaults tend to cluster around times of economic stress due to poor macro-economic conditions, {\em but also} by directly triggering each other through contagion. Although credit default swaps have radically altered the dynamics of contagion for more than a decade, models quantifying their impact on systemic risk are still missing. Here, we examine contagion through credit default swaps in a stylized economic network of corporates and financial institutions. We analyse such a system using a stochastic setting, which allows us to exploit limit theorems to exactly solve the contagion dynamics for the entire system. Our analysis shows that, by creating additional contagion channels, CDS can actually lead to greater instability of the entire network in times of economic stress. This is particularly pronounced when CDS are used by banks to expand their loan books (arguing that CDS would offload the additional risks from their balance sheets). Thus, even with complete hedging through CDS, a significant loan book expansion can lead to considerably enhanced probabilities for the occurrence of very large losses and very high default rates in the system. Our approach adds a new dimension to research on credit contagion, and could feed into a rational underpinning of an improved regulatory framework for credit derivatives.Comment: 26 pages, 7 multi-part figure

    RNA polymerase II stalling promotes nucleosome occlusion and pTEFb recruitment to drive immortalization by Epstein-Barr virus

    Get PDF
    Epstein-Barr virus (EBV) immortalizes resting B-cells and is a key etiologic agent in the development of numerous cancers. The essential EBV-encoded protein EBNA 2 activates the viral C promoter (Cp) producing a message of ~120 kb that is differentially spliced to encode all EBNAs required for immortalization. We have previously shown that EBNA 2-activated transcription is dependent on the activity of the RNA polymerase II (pol II) C-terminal domain (CTD) kinase pTEFb (CDK9/cyclin T1). We now demonstrate that Cp, in contrast to two shorter EBNA 2-activated viral genes (LMP 1 and 2A), displays high levels of promoter-proximally stalled pol II despite being constitutively active. Consistent with pol II stalling, we detect considerable pausing complex (NELF/DSIF) association with Cp. Significantly, we observe substantial Cp-specific pTEFb recruitment that stimulates high-level pol II CTD serine 2 phosphorylation at distal regions (up to +75 kb), promoting elongation. We reveal that Cp-specific pol II accumulation is directed by DNA sequences unfavourable for nucleosome assembly that increase TBP access and pol II recruitment. Stalled pol II then maintains Cp nucleosome depletion. Our data indicate that pTEFb is recruited to Cp by the bromodomain protein Brd4, with polymerase stalling facilitating stable association of pTEFb. The Brd4 inhibitor JQ1 and the pTEFb inhibitors DRB and Flavopiridol significantly reduce Cp, but not LMP1 transcript production indicating that Brd4 and pTEFb are required for Cp transcription. Taken together our data indicate that pol II stalling at Cp promotes transcription of essential immortalizing genes during EBV infection by (i) preventing promoter-proximal nucleosome assembly and ii) necessitating the recruitment of pTEFb thereby maintaining serine 2 CTD phosphorylation at distal regions

    Collective firm bankruptcies and phase transition in rating dynamics

    Full text link
    We present a simple model of firm rating evolution. We consider two sources of defaults: individual dynamics of economic development and Potts-like interactions between firms. We show that such a defined model leads to phase transition, which results in collective defaults. The existence of the collective phase depends on the mean interaction strength. For small interaction strength parameters, there are many independent bankruptcies of individual companies. For large parameters, there are giant collective defaults of firm clusters. In the case when the individual firm dynamics favors dumping of rating changes, there is an optimal strength of the firm's interactions from the systemic risk point of view

    Exclusive diffractive processes and the quark substructure of mesons

    Get PDF
    Exclusive diffractive processes on the nucleon are investigated within a model in which the quark-nucleon interaction is mediated by Pomeron exchange and the quark substructure of mesons is described within a framework based on the Dyson-Schwinger equations of QCD. The model quark-nucleon interaction has four parameters which are completely determined by high-energy πN\pi N and KNK N elastic scattering data. The model is then used to predict vector-meson electroproduction observables. The obtained ρ\rho- and ϕ\phi-meson electroproduction cross sections are in excellent agreement with experimental data. The predicted q2q^2 dependence of J/ψJ/\psi-meson electroproduction also agrees with experimental data. It is shown that confined-quark dynamics play a central role in determining the behavior of the diffractive, vector-meson electroproduction cross section. In particular, the onset of the asymptotic 1/q41/q^4 behavior of the cross section is determined by a momentum scale that is set by the current-quark masses of the quark and antiquark inside the vector meson. This is the origin of the striking differences between the q2q^2 dependence of ρ\rho-, ϕ\phi- and J/ψJ/\psi-meson electroproduction cross sections observed in recent experiments.Comment: 53 pages, 23 figures, revtex and epsfig. Minor additions to tex

    Nonperturbative and perturbative aspects of photo- and electroproduction of vector mesons

    Get PDF
    We discuss various aspects of vector meson production, first analysing the interplay between perturbative and nonperturbative aspects of the QCD calculation. Using a general method adapted to incorporate both perturbative and nonpertubative aspects, we show that nonperturbative effects are important for all experimentally available values of the photon virtuality Q2. We compare the huge amount of experimental information now available with our theoretical results obtained using a specific nonperturbative model without free parameters, showing that quite simple features are able to explain the data.Comment: 19 page
    corecore