108 research outputs found
Generation of polarization entanglement from spatially-correlated photons in spontaneous parametric down-conversion
We propose a novel scheme to generate polarization entanglement from
spatially-correlated photon pairs. We experimentally realized a scheme by means
of a spatial correlation effect in a spontaneous parametric down-conversion and
a modified Michelson interferometer. The scheme we propose in this paper can be
interpreted as a conversion process from spatial correlation to polarization
entanglement.Comment: 4 pages, 4 figure
Observation of Two-Photon Excitation for Three-Level Atoms in a Squeezed Vacuum
The two-photon transition (6S(sub 1/2) yields 6D(sub 5/2)) of atomic Cesium is investigated for excitation with squeezed vacuum generated via nondegenerate parametric down conversion. The two-photon excitation rate (R) is observed to have a non-quadratic dependence of R = aI(exp 2) + bI on the incident photon flux (I), reflecting the nonclassical correlations of the squeezed vacuum field
Accessing the purity of a single photon by the width of the Hong-Ou-Mandel interference
We demonstrate a method to determine the spectral purity of single photons.
The technique is based on the Hong-Ou-Mandel (HOM) interference between a
single photon state and a suitably prepared coherent field. We show that the
temporal width of the HOM dip is not only related to reciprocal of the spectral
width but also to the underlying quantum coherence. Therefore, by measuring the
width of both the HOM dip and the spectrum one can directly quantify the degree
of spectral purity. The distinct advantage of our proposal is that it obviates
the need for perfect mode matching, since it does not rely on the visibility of
the interference. Our method is particularly useful for characterizing the
purity of heralded single photon states.Comment: Extended version, 16 pages, 9 figure
Spectroscopy by frequency entangled photon pairs
Quantum spectroscopy was performed using the frequency-entangled broadband
photon pairs generated by spontaneous parametric down-conversion. An absorptive
sample was placed in front of the idler photon detector, and the frequency of
signal photons was resolved by a diffraction grating. The absorption spectrum
of the sample was measured by counting the coincidences, and the result is in
agreement with the one measured by a conventional spectrophotometer with a
classical light source.Comment: 11 pages, 5 figures, to be published in Phys. Lett.
An entangled two photon source using biexciton emission of an asymmetric quantum dot in a cavity
A semiconductor based scheme has been proposed for generating entangled
photon pairs from the radiative decay of an electrically-pumped biexciton in a
quantum dot. Symmetric dots produce polarisation entanglement, but
experimentally-realised asymmetric dots produce photons entangled in both
polarisation and frequency. In this work, we investigate the possibility of
erasing the `which-path' information contained in the frequencies of the
photons produced by asymmetric quantum dots to recover polarisation-entangled
photons. We consider a biexciton with non-degenerate intermediate excitonic
states in a leaky optical cavity with pairs of degenerate cavity modes close to
the non-degenerate exciton transition frequencies. An open quantum system
approach is used to compute the polarisation entanglement of the two-photon
state after it escapes from the cavity, measured by the visibility of
two-photon interference fringes. We explicitly relate the two-photon visibility
to the degree of Bell-inequality violation, deriving a threshold at which
Bell-inequality violations will be observed. Our results show that an ideal
cavity will produce maximally polarisation-entangled photon pairs, and even a
non-ideal cavity will produce partially entangled photon pairs capable of
violating a Bell-inequality.Comment: 16 pages, 10 figures, submitted to PR
Creation of maximally entangled photon-number states using optical fiber multiports
We theoretically demonstrate a method for producing the maximally
path-entangled state (1/Sqrt[2]) (|N,0> + exp[iN phi] |0,N>) using
intensity-symmetric multiport beamsplitters, single photon inputs, and either
photon-counting postselection or conditional measurement. The use of
postselection enables successful implementation with non-unit efficiency
detectors. We also demonstrate how to make the same state more conveniently by
replacing one of the single photon inputs by a coherent state.Comment: 4 pages, 1 figure. REVTeX4. Replaced with published versio
Nonclassical excitation for atoms in a squeezed vacuum
The two-photon transition 6S(1/2) --> 6D(5/2) is investigated for trapped atomic cesium excited by squeezed light. The rate R of two-photon excitation versus intensity I is observed to be consistent with the functional form R = beta(1)I + beta(2)I(2), extending into a region with slope 1.3. This departure from the quadratic form for classical light sources is due to the fundamental alteration of atomic radiative processes by the nonclassical field
De Broglie Wavelength of a Nonlocal Four-Photon
Superposition is one of the most distinct features of quantum theory and has
been demonstrated in numerous realizations of Young's classical double-slit
interference experiment and its analogues. However, quantum entanglement - a
significant coherent superposition in multiparticle systems - yields phenomena
that are much richer and more interesting than anything that can be seen in a
one-particle system. Among them, one important type of multi-particle
experiments uses path-entangled number-states, which exhibit pure higher-order
interference and allow novel applications in metrology and imaging such as
quantum interferometry and spectroscopy with phase sensitivity at the
Heisenberg limit or quantum lithography beyond the classical diffraction limit.
Up to now, in optical implementations of such schemes lower-order interference
effects would always decrease the overall performance at higher particle
numbers. They have thus been limited to two photons. We overcome this
limitation and demonstrate a linear-optics-based four-photon interferometer.
Observation of a four-particle mode-entangled state is confirmed by
interference fringes with a periodicity of one quarter of the single-photon
wavelength. This scheme can readily be extended to arbitrary photon numbers and
thus represents an important step towards realizable applications with
entanglement-enhanced performance.Comment: 19 pages, 4 figures, submitted on November 18, 200
Entanglement-free Heisenberg-limited phase estimation
Measurement underpins all quantitative science. A key example is the
measurement of optical phase, used in length metrology and many other
applications. Advances in precision measurement have consistently led to
important scientific discoveries. At the fundamental level, measurement
precision is limited by the number N of quantum resources (such as photons)
that are used. Standard measurement schemes, using each resource independently,
lead to a phase uncertainty that scales as 1/sqrt(N) - known as the standard
quantum limit. However, it has long been conjectured that it should be possible
to achieve a precision limited only by the Heisenberg uncertainty principle,
dramatically improving the scaling to 1/N. It is commonly thought that
achieving this improvement requires the use of exotic quantum entangled states,
such as the NOON state. These states are extremely difficult to generate.
Measurement schemes with counted photons or ions have been performed with N <=
6, but few have surpassed the standard quantum limit and none have shown
Heisenberg-limited scaling. Here we demonstrate experimentally a
Heisenberg-limited phase estimation procedure. We replace entangled input
states with multiple applications of the phase shift on unentangled
single-photon states. We generalize Kitaev's phase estimation algorithm using
adaptive measurement theory to achieve a standard deviation scaling at the
Heisenberg limit. For the largest number of resources used (N = 378), we
estimate an unknown phase with a variance more than 10 dB below the standard
quantum limit; achieving this variance would require more than 4,000 resources
using standard interferometry. Our results represent a drastic reduction in the
complexity of achieving quantum-enhanced measurement precision.Comment: Published in Nature. This is the final versio
- …